Skip to content

Soloveva Polina UP my solution #157

New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
45 changes: 35 additions & 10 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,19 +49,19 @@
"""
import numpy as np
import pandas as pd
from pandas.api.types import is_datetime64_any_dtype as is_datetime

from sklearn.base import BaseEstimator
from sklearn.base import ClassifierMixin

from sklearn.model_selection import BaseCrossValidator

from sklearn.utils.validation import check_X_y, check_is_fitted
from sklearn.utils.validation import check_array
from sklearn.utils.validation import check_is_fitted, validate_data
from sklearn.utils.multiclass import check_classification_targets
from sklearn.metrics.pairwise import pairwise_distances


class KNearestNeighbors(BaseEstimator, ClassifierMixin):
class KNearestNeighbors(ClassifierMixin, BaseEstimator):
"""KNearestNeighbors classifier."""

def __init__(self, n_neighbors=1): # noqa: D107
Expand All @@ -82,6 +82,11 @@ def fit(self, X, y):
self : instance of KNearestNeighbors
The current instance of the classifier
"""
X, y = validate_data(self, X, y)
check_classification_targets(y)
self.classes_ = np.unique(y)
self.X_train_ = X
self.y_train_ = y
return self

def predict(self, X):
Expand All @@ -97,7 +102,15 @@ def predict(self, X):
y : ndarray, shape (n_test_samples,)
Predicted class labels for each test data sample.
"""
y_pred = np.zeros(X.shape[0])
check_is_fitted(self, ['X_train_', 'y_train_'])
X = self._validate_data(X, accept_sparse=True, reset=False)
y_pred = np.zeros(X.shape[0], dtype=self.y_train_.dtype)
distances = pairwise_distances(X, self.X_train_, metric='euclidean')
nearest_indices = np.argsort(distances, axis=1)[:, :self.n_neighbors]
nearest_labels = self.y_train_[nearest_indices]
for i, labels in enumerate(nearest_labels):
unique_labels, counts = np.unique(labels, return_counts=True)
y_pred[i] = unique_labels[np.argmax(counts)]
return y_pred

def score(self, X, y):
Expand All @@ -115,7 +128,10 @@ def score(self, X, y):
score : float
Accuracy of the model computed for the (X, y) pairs.
"""
return 0.
check_is_fitted(self)
X = validate_data(self, X, reset=False)
y_pred = self.predict(X)
return np.mean(y == y_pred)


class MonthlySplit(BaseCrossValidator):
Expand Down Expand Up @@ -155,7 +171,13 @@ def get_n_splits(self, X, y=None, groups=None):
n_splits : int
The number of splits.
"""
return 0
if self.time_col == 'index':
X_copy = X.reset_index()
else:
X_copy = X.copy()
if not is_datetime(X_copy[self.time_col]):
raise ValueError(f"{self.time_col} should be of datetime type.")
return (len(X_copy[self.time_col].dt.to_period('M').unique()) - 1)

def split(self, X, y, groups=None):
"""Generate indices to split data into training and test set.
Expand All @@ -177,12 +199,15 @@ def split(self, X, y, groups=None):
idx_test : ndarray
The testing set indices for that split.
"""
X_copy = X.reset_index()
n_splits = self.get_n_splits(X_copy, y, groups)
X_grouped = X_copy.sort_values(by=self.time_col).groupby(
pd.Grouper(key=self.time_col, freq="M"))
idxs = [group.index for _, group in X_grouped]

n_samples = X.shape[0]
n_splits = self.get_n_splits(X, y, groups)
for i in range(n_splits):
idx_train = range(n_samples)
idx_test = range(n_samples)
idx_train = list(idxs[i])
idx_test = list(idxs[i+1])
yield (
idx_train, idx_test
)
Loading