-
Notifications
You must be signed in to change notification settings - Fork 1
Documentation
Rue Yokaze edited this page Jul 1, 2017
·
1 revision
Name | Description |
---|---|
make | create array of specified shape and type |
Name | Description |
---|---|
num_dimensions | number of dimensions |
num_elements | total number of elements |
element | element type |
shape | array size |
reset | clear values |
get | copy of array in numpy.ndarray |
set | reset array with numpy.ndarray |
__getitem__ | get array element via index operator |
__setitem__ | set array element via index operator |
allocates a boost::multi_array of specified shape and data type.
[array_type] multi_array.make(shape, dtype)
Example
>>> import multi_array
>>> x = multi_array.make([2, 3], multi_array.float32)
>>> x
<multi_array.shared_float_matrix object at 0x105f570c8>
returns the number of dimensions of the array.
int x.num_dimensions()
Example
>>> x = multi_array.make([2, 2, 2], multi_array.float32)
>>> x.num_dimensions()
3
returns the total number of elements of the array.
int x.num_elements()
Example
>>> x = multi_array.make([1, 2, 3, 4], multi_array.float32)
>>> x.num_elements()
24
returns the data type of the array.
possible values are
bool8
, uint8
, uint16
, uint32
, uint64
,
int8
, int16
, int32
, int64
, float32
, float64
, all defined in numpy.
dtype x.element()
Example
>>> x = multi_array.make([3, 3], multi_array.int32)
>>> x.element()
dtype('int32')
returns the shape of the array.
tuple x.shape()
Example
>>> x = multi_array.make([2, 3, 4], multi_array.float32)
>>> x.shape()
(2, 3, 4)
clears all the element values of the array with zero.
x.reset()
Example
>>> x = multi_array.make([2, 2], multi_array.float32)
>>> x.set(numpy.random.rand(2, 2))
>>> x.get()
array([[ 0.97381461, 0.22102854],
[ 0.87702358, 0.76791102]], dtype=float32)
>>> x.reset()
>>> x.get()
array([[ 0., 0.],
[ 0., 0.]], dtype=float32)
returns a copy of the array stored in numpy.ndarray.
numpy.ndarray x.get()
Example
>>> x = multi_array.make(4, multi_array.float32)
>>> x[1] = 10
>>> x.get()
array([ 0., 10., 0., 0.], dtype=float32)
resets the array with values from a numpy.ndarray.
x.set(numpy.ndarray nd)
Example
>>> x = multi_array.make([2, 2], multi_array.float32)
>>> x.set(numpy.array([[1, 2], [3, 4]]))
>>> x.get()
array([[ 1., 2.],
[ 3., 4.]], dtype=float32)
returns the value at the supplied index.
[numeric_type] x[index]
Example
>>> x = multi_array.make(4, multi_array.float32)
>>> x[1] = 10
>>> x[1]
10.0
resets the value at the index.
x[index] = [numeric_type]
Example
>>> x = multi_array.make(4, multi_array.float32)
>>> x[1] = 10
>>> x.get()
array([ 0., 10., 0., 0.], dtype=float32)