-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
d041b6c
commit a63e604
Showing
29 changed files
with
5,559 additions
and
0 deletions.
There are no files selected for viewing
79 changes: 79 additions & 0 deletions
79
Machine Learning/1. Linear Regression Single Variable/LinearRegressionSingleVariable.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
# Linear Regression Single Variable | ||
# How to predict home price using Machine Learning. | ||
# We will use Linear Regression to predict the price of a home in the Bengaluru, YNK area. | ||
# Price = m * area + b (m = slope intercept, b = Y intercept) | ||
# area is an independent variable, Price is a dependent variable (depend on x) | ||
|
||
import pandas as pd | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from sklearn import linear_model | ||
# importing the data file using pandas | ||
df = pd.read_csv("Linear_Regression_Single_Variable_(DataSet).csv") | ||
df | ||
|
||
%matplotlib inline | ||
import matplotlib.pyplot as plt | ||
|
||
|
||
|
||
# importing the data file using pandas | ||
df = pd.read_csv("Linear_Regression_Single_Variable_(DataSet).csv") | ||
|
||
#ploting the scatter plot to get idea, .scatter(df.name_of_the_colum_for_x-axis, df.name_of_the_colum_for_y-axis, aditional feature(color,size,marker)) | ||
plt.scatter(df.area, df.price, color = "red", marker="+") | ||
plt.xlabel("area(sq ft)") #labeling the x-axis | ||
plt.ylabel("price(INR)") #labeling the y-axis | ||
|
||
reg = linear_model.LinearRegression() #creating an object for linear regression using linear_model package from sklearn | ||
# reg is the model name | ||
reg.fit(df[["area"]],df.price) #fit the data (training the model with available data set) | ||
#passing the argumnents i,e dataFrame in 2D as x-axis and price as y-axis | ||
#know, It is ready to predict the price. | ||
|
||
#Doing prediction | ||
reg.predict([[3300]]) | ||
#By giving the new area , it is going to predict the new price | ||
# y = m * x + b | ||
reg.coef_ # to find the coefficient(m) | ||
reg.intercept_ # to find the intercept(b) | ||
# y = m * x +b | ||
y = 135.78767123 * 3300 + 180616.43835616432 #3300 is the area which we want to predict the price | ||
#ploting the line using the predicted data(x-axis(df.area),y-axis(reg.predict(df[['area']]))) | ||
|
||
plt.scatter(df.area, df.price, color = "red", marker="+") | ||
plt.xlabel("area(sq ft)") #labeling the x-axis | ||
plt.ylabel("price(INR)") #labeling the y-axis | ||
plt.plot(df.area, reg.predict(df[["area"]]), color = "blue") #plotting the line | ||
plt.show()#Predicted price of houses with area greater than 1000 sqft is : **<jupyter_code>print | ||
#ploting the line using the formula y = m * x + b | ||
# df without price | ||
d = pd.read_csv("Linear_Regression_Single_Variable_(DataSet with area only).csv") | ||
d.head(3) | ||
#predicting the data set using the previous data | ||
# previous data set contain area and price, but new data set contain only area , here we are going to predict whole price of the data set using previous dataset | ||
p = reg.predict(d) | ||
reg.predict(d) | ||
d['price'] = p #creating a colum price to store or dispaly the data(predicted price data), and assigning the data(pridicted value) to it. | ||
d | ||
#to get the data (export the data in same csv file) | ||
# d.to_csv("Linear_Regression_Single_Variable_(DataSet with area only).csv",index=False) #index = False to remove index value (which it will defalt add in csv file while exporting) | ||
#Exercise predict the Canada income of the year 2020 using canada_per_capita_income.csv | ||
|
||
import pandas as pd | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from sklearn import linear_model | ||
data = pd.read_csv("canada_per_capita_income.csv") | ||
data.head(5) | ||
|
||
%matplotlib inline | ||
import matplotlib.pyplot as plt | ||
plt.scatter(df.year,df.income,color = "blue", marker="*") | ||
plt.xlabel("area") | ||
plt.ylabel("price") | ||
plt.plot(df.year,reg.predict(df[['year']]),color = "red") | ||
plt.show() | ||
reg = linear_model.LinearRegression() | ||
reg.fit(df[['year']],df.income) | ||
reg.predict([[2020]]) |
56 changes: 56 additions & 0 deletions
56
...ine Learning/1. Linear Regression Single Variable/Linear_Regression_Single_Variable.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"ename": "FileNotFoundError", | ||
"evalue": "[Errno 2] No such file or directory: 'Prediction\\\\stockData.csv'", | ||
"output_type": "error", | ||
"traceback": [ | ||
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", | ||
"\u001b[1;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", | ||
"\u001b[1;32mc:\\Users\\Admin\\Desktop\\ADS Github\\Learnings\\Linear_Regression_Single_Variable.ipynb Cell 2\u001b[0m line \u001b[0;36m1\n\u001b[1;32m----> <a href='vscode-notebook-cell:/c%3A/Users/Admin/Desktop/ADS%20Github/Learnings/Linear_Regression_Single_Variable.ipynb#W1sZmlsZQ%3D%3D?line=0'>1</a>\u001b[0m df \u001b[39m=\u001b[39m pd\u001b[39m.\u001b[39;49mread_csv(\u001b[39m\"\u001b[39;49m\u001b[39mPrediction\u001b[39;49m\u001b[39m\\\u001b[39;49m\u001b[39mstockData.csv\u001b[39;49m\u001b[39m\"\u001b[39;49m)\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/Admin/Desktop/ADS%20Github/Learnings/Linear_Regression_Single_Variable.ipynb#W1sZmlsZQ%3D%3D?line=1'>2</a>\u001b[0m df\n", | ||
"File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pandas\\io\\parsers\\readers.py:912\u001b[0m, in \u001b[0;36mread_csv\u001b[1;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend)\u001b[0m\n\u001b[0;32m 899\u001b[0m kwds_defaults \u001b[39m=\u001b[39m _refine_defaults_read(\n\u001b[0;32m 900\u001b[0m dialect,\n\u001b[0;32m 901\u001b[0m delimiter,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 908\u001b[0m dtype_backend\u001b[39m=\u001b[39mdtype_backend,\n\u001b[0;32m 909\u001b[0m )\n\u001b[0;32m 910\u001b[0m kwds\u001b[39m.\u001b[39mupdate(kwds_defaults)\n\u001b[1;32m--> 912\u001b[0m \u001b[39mreturn\u001b[39;00m _read(filepath_or_buffer, kwds)\n", | ||
"File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pandas\\io\\parsers\\readers.py:577\u001b[0m, in \u001b[0;36m_read\u001b[1;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[0;32m 574\u001b[0m _validate_names(kwds\u001b[39m.\u001b[39mget(\u001b[39m\"\u001b[39m\u001b[39mnames\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39mNone\u001b[39;00m))\n\u001b[0;32m 576\u001b[0m \u001b[39m# Create the parser.\u001b[39;00m\n\u001b[1;32m--> 577\u001b[0m parser \u001b[39m=\u001b[39m TextFileReader(filepath_or_buffer, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwds)\n\u001b[0;32m 579\u001b[0m \u001b[39mif\u001b[39;00m chunksize \u001b[39mor\u001b[39;00m iterator:\n\u001b[0;32m 580\u001b[0m \u001b[39mreturn\u001b[39;00m parser\n", | ||
"File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pandas\\io\\parsers\\readers.py:1407\u001b[0m, in \u001b[0;36mTextFileReader.__init__\u001b[1;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[0;32m 1404\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39moptions[\u001b[39m\"\u001b[39m\u001b[39mhas_index_names\u001b[39m\u001b[39m\"\u001b[39m] \u001b[39m=\u001b[39m kwds[\u001b[39m\"\u001b[39m\u001b[39mhas_index_names\u001b[39m\u001b[39m\"\u001b[39m]\n\u001b[0;32m 1406\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mhandles: IOHandles \u001b[39m|\u001b[39m \u001b[39mNone\u001b[39;00m \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n\u001b[1;32m-> 1407\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_engine \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_make_engine(f, \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mengine)\n", | ||
"File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pandas\\io\\parsers\\readers.py:1661\u001b[0m, in \u001b[0;36mTextFileReader._make_engine\u001b[1;34m(self, f, engine)\u001b[0m\n\u001b[0;32m 1659\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39m\"\u001b[39m\u001b[39mb\u001b[39m\u001b[39m\"\u001b[39m \u001b[39mnot\u001b[39;00m \u001b[39min\u001b[39;00m mode:\n\u001b[0;32m 1660\u001b[0m mode \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mb\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m-> 1661\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mhandles \u001b[39m=\u001b[39m get_handle(\n\u001b[0;32m 1662\u001b[0m f,\n\u001b[0;32m 1663\u001b[0m mode,\n\u001b[0;32m 1664\u001b[0m encoding\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49moptions\u001b[39m.\u001b[39;49mget(\u001b[39m\"\u001b[39;49m\u001b[39mencoding\u001b[39;49m\u001b[39m\"\u001b[39;49m, \u001b[39mNone\u001b[39;49;00m),\n\u001b[0;32m 1665\u001b[0m compression\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49moptions\u001b[39m.\u001b[39;49mget(\u001b[39m\"\u001b[39;49m\u001b[39mcompression\u001b[39;49m\u001b[39m\"\u001b[39;49m, \u001b[39mNone\u001b[39;49;00m),\n\u001b[0;32m 1666\u001b[0m memory_map\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49moptions\u001b[39m.\u001b[39;49mget(\u001b[39m\"\u001b[39;49m\u001b[39mmemory_map\u001b[39;49m\u001b[39m\"\u001b[39;49m, \u001b[39mFalse\u001b[39;49;00m),\n\u001b[0;32m 1667\u001b[0m is_text\u001b[39m=\u001b[39;49mis_text,\n\u001b[0;32m 1668\u001b[0m errors\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49moptions\u001b[39m.\u001b[39;49mget(\u001b[39m\"\u001b[39;49m\u001b[39mencoding_errors\u001b[39;49m\u001b[39m\"\u001b[39;49m, \u001b[39m\"\u001b[39;49m\u001b[39mstrict\u001b[39;49m\u001b[39m\"\u001b[39;49m),\n\u001b[0;32m 1669\u001b[0m storage_options\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49moptions\u001b[39m.\u001b[39;49mget(\u001b[39m\"\u001b[39;49m\u001b[39mstorage_options\u001b[39;49m\u001b[39m\"\u001b[39;49m, \u001b[39mNone\u001b[39;49;00m),\n\u001b[0;32m 1670\u001b[0m )\n\u001b[0;32m 1671\u001b[0m \u001b[39massert\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mhandles \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m\n\u001b[0;32m 1672\u001b[0m f \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mhandles\u001b[39m.\u001b[39mhandle\n", | ||
"File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pandas\\io\\common.py:859\u001b[0m, in \u001b[0;36mget_handle\u001b[1;34m(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)\u001b[0m\n\u001b[0;32m 854\u001b[0m \u001b[39melif\u001b[39;00m \u001b[39misinstance\u001b[39m(handle, \u001b[39mstr\u001b[39m):\n\u001b[0;32m 855\u001b[0m \u001b[39m# Check whether the filename is to be opened in binary mode.\u001b[39;00m\n\u001b[0;32m 856\u001b[0m \u001b[39m# Binary mode does not support 'encoding' and 'newline'.\u001b[39;00m\n\u001b[0;32m 857\u001b[0m \u001b[39mif\u001b[39;00m ioargs\u001b[39m.\u001b[39mencoding \u001b[39mand\u001b[39;00m \u001b[39m\"\u001b[39m\u001b[39mb\u001b[39m\u001b[39m\"\u001b[39m \u001b[39mnot\u001b[39;00m \u001b[39min\u001b[39;00m ioargs\u001b[39m.\u001b[39mmode:\n\u001b[0;32m 858\u001b[0m \u001b[39m# Encoding\u001b[39;00m\n\u001b[1;32m--> 859\u001b[0m handle \u001b[39m=\u001b[39m \u001b[39mopen\u001b[39;49m(\n\u001b[0;32m 860\u001b[0m handle,\n\u001b[0;32m 861\u001b[0m ioargs\u001b[39m.\u001b[39;49mmode,\n\u001b[0;32m 862\u001b[0m encoding\u001b[39m=\u001b[39;49mioargs\u001b[39m.\u001b[39;49mencoding,\n\u001b[0;32m 863\u001b[0m errors\u001b[39m=\u001b[39;49merrors,\n\u001b[0;32m 864\u001b[0m newline\u001b[39m=\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39m\"\u001b[39;49m,\n\u001b[0;32m 865\u001b[0m )\n\u001b[0;32m 866\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m 867\u001b[0m \u001b[39m# Binary mode\u001b[39;00m\n\u001b[0;32m 868\u001b[0m handle \u001b[39m=\u001b[39m \u001b[39mopen\u001b[39m(handle, ioargs\u001b[39m.\u001b[39mmode)\n", | ||
"\u001b[1;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'Prediction\\\\stockData.csv'" | ||
] | ||
} | ||
], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.6" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
14 changes: 14 additions & 0 deletions
14
...Regression Single Variable/Linear_Regression_Single_Variable_(DataSet with area only).csv
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
area | ||
1000 | ||
1500 | ||
2300 | ||
3540 | ||
4120 | ||
4560 | ||
5490 | ||
3860 | ||
4750 | ||
2300 | ||
9000 | ||
8600 | ||
7100 |
6 changes: 6 additions & 0 deletions
6
...ning/1. Linear Regression Single Variable/Linear_Regression_Single_Variable_(DataSet).csv
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
area,price | ||
2600,550000 | ||
3000,565000 | ||
3200,610000 | ||
3600,680000 | ||
4000,725000 |
95 changes: 95 additions & 0 deletions
95
Machine Learning/10. Support Vector Machine (SVM)/support_vector_machine.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
print("Support Vector Machine") | ||
# z = x^2 + y^2 | ||
# z is a transformation | ||
#importing iris dataset from sklearn.datasets | ||
import pandas as pd | ||
from sklearn.datasets import load_iris | ||
iris = load_iris() | ||
#get the features of the dataset | ||
iris.feature_names | ||
#get the target of the dataset | ||
iris.target_names | ||
|
||
#convert dataset into dataframe | ||
df = pd.DataFrame(iris.data, columns=iris.feature_names) | ||
df.head() | ||
#create a target colum | ||
df['target'] = iris.target | ||
df.head() | ||
|
||
df0 = df[df.target==0] | ||
df1 = df[df.target==1] | ||
df2 = df[df.target==2] | ||
df['flower_name'] =df.target.apply(lambda x: iris.target_names[x]) | ||
#lambada is function or transformation, which transforms the target value to the | ||
#corresponding flower name, for this transformation we use apply function | ||
# target value 0 is converted into setosa | ||
# target value 1 is converted into versicolor | ||
# target value 2 is converted into virginica | ||
df.head() | ||
df0.head()# 0 for setosa | ||
df1.head()# 1 for versicolor | ||
df2.head()# 2 for virginica | ||
# creating the graphs for better visualization | ||
import matplotlib.pyplot as plt | ||
# **Sepal length vs Sepal Width (Setosa vs Versicolor)** | ||
plt.xlabel('Sepal Length') | ||
plt.ylabel('Sepal Width') | ||
plt.scatter(df0['sepal length (cm)'], df0['sepal width (cm)'],color="green",marker='+') | ||
plt.scatter(df1['sepal length (cm)'], df1['sepal width (cm)'],color="blue",marker='.') | ||
|
||
|
||
# **Petal length vs Pepal Width (Setosa vs Versicolor)** | ||
plt.xlabel('Petal Length') | ||
plt.ylabel('Petal Width') | ||
plt.scatter(df0['petal length (cm)'], df0['petal width (cm)'],color="green",marker='+') | ||
plt.scatter(df1['petal length (cm)'], df1['petal width (cm)'],color="blue",marker='.') | ||
|
||
# **Train Using Support Vector Machine (SVM)** | ||
from sklearn.model_selection import train_test_split | ||
X = df.drop(['target','flower_name'], axis='columns') | ||
y = df.target | ||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) | ||
|
||
#find the length of the model | ||
len(X_train) | ||
len(y_train) | ||
#print out the first 5 rows of X_train and y_train | ||
X_train.head() | ||
y_train.head() | ||
|
||
from sklearn.svm import SVC | ||
#create an object to train. | ||
model = SVC() | ||
#train the model fit function | ||
model.fit(X_train, y_train) | ||
|
||
#check the score of the trained model | ||
acc = model.score(X_test, y_test) | ||
#print the accuracy of the test data | ||
print("Accuracy of the test data is: ",acc*100,"%") | ||
#prediction for seatosa | ||
model.predict([[4.8,3.0,1.5,0.3]]) | ||
#moel.predict([[new sepal length (cm),new sepal width (cm),new petal length (cm),new petal width (cm)]]) | ||
#prediction for versicolor | ||
model.predict([[6.0,2.9,4.5,1.5]]) | ||
#moel.predict([[new sepal length (cm),new sepal width (cm),new petal length (cm),new petal width (cm)]]) | ||
#prediction for virginica | ||
model.predict([[6.0,3.4,4.5,2.8]]) | ||
#moel.predict([[new sepal length (cm),new sepal width (cm),new petal length (cm),new petal width (cm)]]) | ||
# **Tune parameters** | ||
# **1. Regularization (C)** | ||
model_C = SVC(C=1) | ||
model_C.fit(X_train, y_train) | ||
model_C.score(X_test, y_test) | ||
model_C = SVC(C=10) | ||
model_C.fit(X_train, y_train) | ||
model_C.score(X_test, y_test) | ||
# **2. Gamma** | ||
model_g = SVC(gamma=10) | ||
model_g.fit(X_train, y_train) | ||
model_g.score(X_test, y_test) | ||
# **3. Kernel** | ||
model_linear_kernal = SVC(kernel='linear') | ||
model_linear_kernal.fit(X_train, y_train) | ||
model_linear_kernal.score(X_test, y_test) |
Oops, something went wrong.