-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathComprehensiveAnalysis.py
531 lines (452 loc) · 17.8 KB
/
ComprehensiveAnalysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
from collections import defaultdict
from typing import List
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from SATSolver import DPLLSolver, ExhaustiveSATSolver, RandomSATSolver
from Utilities import RandomFormulaGenerator
class ComprehensiveSATAnalyzer:
"""Enhanced comprehensive analyzer for SAT solver analysis"""
def __init__(self):
self.results = defaultdict(list)
self.solvers = {
"dpll": DPLLSolver(),
"exhaustive": ExhaustiveSATSolver(),
"random": RandomSATSolver(
max_flips=100, max_tries=10
), # Reduced for performance
}
# Configure plot style
plt.style.use("seaborn-v0_8")
self.colors = sns.color_palette("husl", 8)
def compare_solvers(
self, n: int, ratio: float, results: dict, solvers_to_run: List[str]
) -> None:
"""Compare specified solvers on the same formula"""
generator = RandomFormulaGenerator()
formula = generator.generate(n, int(n * ratio))
trial_results = {"n": n, "ratio": ratio}
# Run specified solvers
for solver_name in solvers_to_run:
solver = self.solvers[solver_name]
result = solver.solve(formula)
# Add basic metrics
trial_results[f"{solver_name}_result"] = result is not None
trial_results[f"{solver_name}_time"] = solver.stats.solving_time_ms.value
# Add solver-specific metrics
if solver_name == "dpll":
trial_results.update(
{
"backtracks": solver.stats.stats["backtracks"].value,
"unit_propagations": solver.stats.stats[
"unit_propagations"
].value,
"pure_literals": solver.stats.stats["pure_literals"].value,
"decision_depths_avg": np.mean(
solver.stats.stats["decision_depths"].value
)
if solver.stats.stats["decision_depths"].value
else 0,
}
)
elif solver_name == "random":
trial_results.update(
{
"total_flips": solver.stats.stats["total_flips"].value,
"successful_flips": solver.stats.stats[
"successful_flips"
].value,
"restart_count": solver.stats.stats["restart_count"].value,
}
)
elif solver_name == "exhaustive":
trial_results.update(
{
"nodes_visited": solver.stats.stats["nodes_visited"].value,
"assignments_tested": solver.stats.stats[
"assignments_tested"
].value,
"partial_validations": solver.stats.stats[
"partial_validations"
].value,
}
)
# Store results
results[len(results)] = trial_results
def plot_results(self, results: dict) -> None:
"""Create comprehensive visualizations of solver performance"""
# Convert results to DataFrame
df = pd.DataFrame.from_dict(results, orient="index")
self._plot_phase_transition(df)
self._plot_time_complexity(df)
self._plot_heatmaps(df)
self._print_statistical_analysis(df)
def _plot_phase_transition(self, df: pd.DataFrame) -> None:
"""Plot clean and interpretable phase transition analysis"""
plt.figure(figsize=(12, 8))
# Select fewer, well-spaced n values
n_values = sorted(df["n"].unique())
selected_n = []
if len(n_values) > 3:
# Take only 3 values: smallest, middle, and largest
selected_n = [
n_values[0], # smallest
n_values[len(n_values) // 2], # middle
n_values[-1], # largest
]
else:
selected_n = n_values
# Use distinct colors that are easy to distinguish
colors = ["#2E86AB", "#A23B72", "#F18F01"][: len(selected_n)]
# Plot data with smoothing
for n, color in zip(selected_n, colors):
subset = df[df["n"] == n]
# Calculate mean for each ratio with smoothing
grouped = subset.groupby("ratio")
sat_prob = grouped["dpll_result"].mean() * 100
# Sort by ratio for proper line connection
sat_prob = sat_prob.sort_index()
# Create smooth line
plt.plot(
sat_prob.index,
sat_prob.values,
"o-",
label=f"n = {n}",
color=color,
linewidth=3,
markersize=8,
markeredgewidth=2,
markeredgecolor="white",
)
# Add phase transition line with clear styling
plt.axvline(
x=4.26,
color="#D64933",
linestyle="--",
linewidth=2.5,
label="Phase Transition",
alpha=0.7,
)
# Create distinct regions
plt.axvspan(
min(df["ratio"]), 4.26, alpha=0.1, color="green", label="SAT Region"
)
plt.axvspan(
4.26, max(df["ratio"]), alpha=0.1, color="red", label="UNSAT Region"
)
# Improve grid and styling
plt.grid(True, linestyle="--", alpha=0.2)
plt.xlabel("Clause-to-Variable Ratio (α = m/n)", fontsize=12, labelpad=10)
plt.ylabel("Probability of Satisfiability (%)", fontsize=12, labelpad=10)
plt.title("Phase Transition in Random 3-SAT", fontsize=14, pad=20)
# Customize legend
plt.legend(
bbox_to_anchor=(1.02, 1),
loc="upper left",
borderaxespad=0,
frameon=True,
fontsize=11,
)
# Set axis limits
plt.xlim(min(df["ratio"]) * 0.98, max(df["ratio"]) * 1.02)
plt.ylim(-2, 102)
# Set background color
plt.gca().set_facecolor("white")
# Add subtle tick lines
plt.gca().tick_params(axis="both", which="major", labelsize=10)
plt.gca().yaxis.set_major_formatter(
plt.FuncFormatter(lambda x, _: f"{int(x)}%")
)
plt.tight_layout()
plt.show()
def _plot_time_complexity(self, df: pd.DataFrame) -> None:
"""Plot time complexity analysis with seamless extrapolation for Exhaustive and Random solvers"""
plt.figure(figsize=(12, 8))
# Get unique n values and ratios
all_n = sorted(df["n"].unique())
small_n = [
n for n in all_n if n <= 15
] # n values where all solvers were tested
ratios = sorted(df["ratio"].unique())
mid_ratio = ratios[len(ratios) // 2]
colors = {"dpll": "#2E86AB", "random": "#A23B72", "exhaustive": "#F18F01"}
# Plot DPLL actual data
dpll_data = df[df["dpll_time"].notna()]
dpll_times = dpll_data.groupby("n")["dpll_time"].mean()
plt.plot(
dpll_times.index,
dpll_times.values,
"o-",
label="DPLL (measured)",
color=colors["dpll"],
linewidth=2,
markersize=8,
)
# Calculate extrapolation for each solver
for solver in ["exhaustive", "random"]:
time_col = f"{solver}_time"
solver_data = df[df[time_col].notna()]
if not solver_data.empty:
# Get actual data for small n
actual_times = solver_data.groupby("n")[time_col].mean()
# Plot actual data points
plt.plot(
actual_times.index,
actual_times.values,
"o-",
label=f"{solver.title()} (measured)",
color=colors[solver],
linewidth=2,
markersize=8,
)
# Use last actual data point for scaling
last_n = actual_times.index[-1]
last_time = actual_times.values[-1]
# Calculate scaling factor based on last actual point
if solver == "exhaustive":
scaling_factor = last_time / (2**last_n)
extrapolated_times = scaling_factor * (2 ** np.array(all_n))
else: # random
scaling_factor = last_time / (2 ** (last_n / 2))
extrapolated_times = scaling_factor * (2 ** (np.array(all_n) / 2))
# Get the index where extrapolation should start
start_idx = len(small_n) - 1
# Plot extrapolated line starting from last actual point
plt.plot(
all_n[start_idx:],
extrapolated_times[start_idx:],
"--",
label=f"{solver.title()} (extrapolated)",
color=colors[solver],
linewidth=2,
alpha=0.7,
)
# Add complexity reference lines
n_ref = np.array(all_n)
ref_point = dpll_times.values[-1] / (n_ref[-1] * np.log(n_ref[-1]))
plt.plot(
n_ref,
ref_point * n_ref * np.log(n_ref),
":",
color="gray",
alpha=0.5,
label="O(n log n) reference",
)
# Customization
plt.yscale("log")
plt.grid(True, which="both", ls="-", alpha=0.2)
plt.xlabel("Number of Variables (n)", fontsize=12)
plt.ylabel("Average Solving Time (ms)", fontsize=12)
plt.title(
f"Solver Time Complexity Analysis\n(at α ≈ {mid_ratio:.2f})",
fontsize=14,
pad=20,
)
# Add shaded region between actual and extrapolated data
plt.axvspan(
small_n[-1],
all_n[-1],
color="gray",
alpha=0.1,
label="Extrapolation Region",
)
# Customize legend
plt.legend(
bbox_to_anchor=(1.02, 1),
loc="upper left",
borderaxespad=0,
frameon=True,
fontsize=10,
)
plt.tight_layout()
plt.show()
def _plot_heatmaps(self, df: pd.DataFrame) -> None:
"""Plot heatmap analysis with wider depth heatmap and robust statistics"""
metrics = {
"dpll_result": "SAT Probability (%)",
"decision_depths_avg": "Search Tree Depth",
}
# Create figure with extra space for annotations
fig = plt.figure(figsize=(16, 8))
# Create a gridspec with different column widths (40% for first, 60% for second)
gs = plt.GridSpec(
2, 2, height_ratios=[4, 1], width_ratios=[5, 5], hspace=0.3, wspace=0.3
)
axes = [plt.subplot(gs[0, 0]), plt.subplot(gs[0, 1])]
for idx, (metric, title) in enumerate(metrics.items()):
if metric not in df.columns:
continue
# Create pivot table
pivot = df.pivot_table(
values=metric, index="n", columns="ratio", aggfunc="mean"
)
# Convert satisfiability to percentage
if metric == "dpll_result":
pivot *= 100
fmt = ".0f"
cmap = "RdYlBu_r"
center = 50
cbar_label = "Percentage"
annot_kws = {"size": 10}
else:
# Round depth values to 2 decimal places
pivot = pivot.round(2)
fmt = ".1f"
cmap = "viridis"
center = None
cbar_label = "Average Depth"
annot_kws = {"size": 8, "rotation": 45}
# Create annotation array
annot = pivot.copy()
# Create heatmap
im = sns.heatmap(
pivot,
ax=axes[idx],
cmap=cmap,
annot=annot,
fmt=fmt,
cbar_kws={"label": cbar_label},
center=center,
annot_kws=annot_kws,
)
# Customize axes
axes[idx].set_title(title, pad=10)
axes[idx].set_xlabel("Clause-to-Variable Ratio (α)")
axes[idx].set_ylabel("Number of Variables (n)")
# Add phase transition line and region labels for SAT probability
if metric == "dpll_result":
transition_idx = np.abs(pivot.columns - 4.26).argmin()
axes[idx].axvline(
x=transition_idx,
color="black",
linestyle="--",
alpha=0.5,
linewidth=1,
)
# Add region labels
axes[idx].text(
-0.2,
pivot.shape[0] / 2,
"SAT",
rotation=90,
verticalalignment="center",
)
axes[idx].text(
pivot.shape[1],
pivot.shape[0] / 2,
"UNSAT",
rotation=90,
verticalalignment="center",
)
# Rotate x-axis labels
axes[idx].set_xticklabels(axes[idx].get_xticklabels(), rotation=45)
# Add insights boxes below each heatmap
insight_boxes = [plt.subplot(gs[1, 0]), plt.subplot(gs[1, 1])]
# Calculate key statistics more robustly
sat_avg = df.groupby("ratio")["dpll_result"].mean() * 100
# Find the ratio closest to 50% satisfiability
hardest_ratio = sat_avg.index[np.abs(sat_avg - 50).argmin()]
max_depth_ratio = df.groupby("ratio")["decision_depths_avg"].mean().idxmax()
max_depth = df.groupby("ratio")["decision_depths_avg"].mean().max()
# Create insight text
sat_insights = (
"Key Insights:\n"
"• Clear phase transition at α ≈ 4.26\n"
f"• Critical ratio observed at α ≈ {hardest_ratio:.2f}\n"
"• Higher n values show sharper transition"
)
depth_insights = (
"Key Insights:\n"
"• Deeper searches needed near phase transition\n"
f"• Peak computational effort at α ≈ {max_depth_ratio:.2f}\n"
f"• Maximum average depth: {max_depth:.2f}"
)
# Add insight boxes with different styling
for idx, (box, text) in enumerate(
zip(insight_boxes, [sat_insights, depth_insights])
):
box.text(
0.05,
0.5,
text,
verticalalignment="center",
bbox=dict(
boxstyle="round,pad=1",
facecolor="white",
alpha=0.8,
edgecolor="gray",
),
)
box.axis("off")
plt.suptitle("SAT Solver Performance Analysis", fontsize=14, y=0.95)
plt.show()
def _print_statistical_analysis(self, df: pd.DataFrame) -> None:
"""Print comprehensive statistical analysis"""
print("\nDetailed Statistical Analysis")
print("=" * 80)
# Satisfiability analysis
print("\nSatisfiability Analysis:")
sat_pivot = pd.pivot_table(
df,
values="dpll_result",
index="ratio",
columns="n",
aggfunc=lambda x: f"{np.mean(x)*100:.1f}%",
)
print(sat_pivot)
# Solver performance analysis
for solver in ["dpll", "random", "exhaustive"]:
time_col = f"{solver}_time"
if time_col not in df.columns:
continue
solver_df = df[df[time_col].notna()]
if solver_df.empty:
continue
print(f"\n{solver.upper()} Solver Statistics:")
time_stats = pd.pivot_table(
solver_df,
values=time_col,
index="ratio",
columns="n",
aggfunc=["mean", "median", "std"],
)
print("\nMean solving times (ms):")
print(time_stats["mean"].round(2))
print("\nMedian solving times (ms):")
print(time_stats["median"].round(2))
print("\nStandard deviation of solving times (ms):")
print(time_stats["std"].round(2))
def run_comprehensive_analysis():
"""Run comprehensive analysis of SAT solvers"""
analyzer = ComprehensiveSATAnalyzer()
print("Starting Comprehensive SAT Solver Analysis")
print("=" * 80)
# Configuration
small_n = [5, 10, 15] # For all solvers
large_n = [20, 25, 30, 40] # For DPLL only
ratios = [2.0, 3.0, 3.5, 4.26, 5.0, 7.0]
trials_per_config = 10
results = {}
# Run small instances with all solvers
print("\nAnalyzing small instances...")
for n in small_n:
print(f"\nTesting n = {n}")
for ratio in ratios:
print(f" m/n = {ratio:.2f}", end="\r")
for _ in range(trials_per_config):
analyzer.compare_solvers(
n, ratio, results, solvers_to_run=["dpll", "random", "exhaustive"]
)
# Run larger instances with DPLL only
print("\nAnalyzing larger instances...")
for n in large_n:
print(f"\nTesting n = {n}")
for ratio in ratios:
print(f" m/n = {ratio:.2f}", end="\r")
for _ in range(trials_per_config):
analyzer.compare_solvers(n, ratio, results, solvers_to_run=["dpll"])
print("\nGenerating analysis and visualizations...")
analyzer.plot_results(results)
if __name__ == "__main__":
run_comprehensive_analysis()