Progressive journey through TensorFlow implementations, from foundational concepts to advanced architectures. Features custom training pipelines, optimized GPU implementations, and production-ready models.
Features β’ Installation β’ Quick Start β’ Documentation β’ Contributing
- Features
- Project Structure
- Prerequisites
- Installation
- Quick Start
- Documentation
- Contributing
- Versioning
- Authors
- Citation
- License
- Acknowledgments
- Custom training loops and optimizations
- GPU-accelerated model training
- Production deployment patterns
- CUDA optimizations for large-scale training
- Comprehensive documentation and examples
graph TD
A[tensorflow-evolution] --> B[notebooks]
A --> C[src]
A --> D[tests]
A --> E[docs]
A --> F[apps]
C --> G[models]
C --> H[data]
C --> I[utils]
C --> J[cuda]
G --> K[basic]
G --> L[advanced]
J --> M[kernels]
J --> N[optimizations]
Click to expand full directory structure
tensorflow-evolution/
βββ notebooks/ # Jupyter notebooks for experiments
β βββ basic/ # Foundational concepts
β βββ advanced/ # Advanced implementations
βββ src/ # Source code
β βββ models/ # Model implementations
β βββ data/ # Data processing utilities
β βββ utils/ # Helper functions
β βββ cuda/ # CUDA optimizations
βββ tests/ # Unit tests
βββ docs/ # Documentation
βββ apps/ # Demo applications
βββ README.md # Main documentation
- Python 3.8+
- CUDA 11.8+ (for GPU support)
- NVIDIA GPU with compute capability 6.0+
# Clone the repository
git clone https://github.com/BjornMelin/tensorflow-evolution.git
cd tensorflow-evolution
# Create virtual environment
python -m venv venv
source venv/bin/activate # Linux/Mac
# or
.\venv\Scripts\activate # Windows
# Install dependencies
pip install -r requirements.txt
from src.models import BasicCNN
from src.utils import DataLoader
# Initialize model
model = BasicCNN()
# Train model
model.train(data_loader, epochs=10)
Model | Description | Performance | CUDA Support |
---|---|---|---|
BasicCNN | Foundational CNN architecture | 94% accuracy on MNIST | β |
TransformerBlock | Custom transformer implementation | BERT-comparable | β |
AdvancedGAN | Generative adversarial network | FID: 18.3 | β |
Comprehensive CUDA optimizations including:
- Custom compute kernels
- Memory-efficient training
- Multi-GPU data parallelism
- Gradient accumulation
Performance metrics across different hardware configurations:
Model Size | GPU Memory | Training Time | Inference Time |
---|---|---|---|
Small (10M) | 4GB | 2.3 hrs | 5ms |
Medium (50M) | 8GB | 5.7 hrs | 15ms |
Large (100M) | 16GB | 12.4 hrs | 35ms |
We welcome contributions! Please see our:
We use SemVer for versioning. For available versions, see the tags on this repository.
Bjorn Melin
- GitHub: @BjornMelin
- LinkedIn: Bjorn Melin
@misc{melin2024tensorflowevolution,
author = {Melin, Bjorn},
title = {TensorFlow Evolution: Progressive Deep Learning Implementations},
year = {2024},
publisher = {GitHub},
url = {https://github.com/BjornMelin/tensorflow-evolution}
}
This project is licensed under the MIT License - see the LICENSE file for details.
- TensorFlow team for their excellent documentation
- NVIDIA for CUDA toolkit and documentation
- Open source community for valuable feedback
Made with π§ and β€οΈ by Bjorn Melin