Skip to content

Source code and Supplementary materials @PNAS2021 paper: Covid19 Vaccination Race Disparity Study.

Notifications You must be signed in to change notification settings

CHIDS-UMD/Covid19-Vaccination-Race-Disparity

Repository files navigation

Socioeconomic Privilege and Political Ideology are Associated with Racial Disparity in COVID-19 Vaccination: Methods and Materials

This public repository contains the materials for reproducing the results described in Agarwal et al. (2021) Socioeconomic Privilege and Political Ideology Are Associated with Racial Disparity in COVID-19 Vaccination and additional supplementary analyses.

Table of Contents

Materials for reproducibility include:

  1. COVID-19 vaccination rate data and Python code to reproduce the data collection, including:

    a) The notebook 1.CountyVaccine_Automation includes the code to collect the county-level vaccination information by race from the States whose vaccination data is oragnized in a downlable table. In this notebook, the Python code can automatically scrape the data. The States include: Illinois, Texas, Pennsylvania, Indiana, and Virginia.

    b) The notebook 1.CountyVaccine_Tableau is designed to collect the county-level vaccination information by race from the States whose vaccination information is present in a Tableau Dashboard format. In this notebook, the Python code can also automatically scrape the data. The States include:New York, Wisconsin, Ohio, South Carolina, and Oregon.

    c) The notebook 1.CountyVaccine_Manual is developed to collect the county-level racial vaccination information from the States whose vaccination information needs to be collected manually before running the code. These States include: California, Tennessee, North Carolina, West Virginia, Maine, and New Jersey. The instructions on manual collections are documented here.

  2. Data and Python code to merge information from the various sources cited in our Supplementary Information (SI) Appendix.

  3. Python code for cleaning the data.

  4. Clean data and code to reproduce our main regression analyses (reported in main text) and robustness checks (reported in SI Appendix) as well as additional supplementary analyses reported here.

Below, we also provide additional summary statistics, exploratory data analysis, and full results for the robustness checks described in the SI appendix.

The data is in DataInfo/State-VaxData-Source.csv data.

State # of Counties Population (million) # of Valid Counties Population in Analysis (million) Data Source
California 54 39.45 43 39.09 https://covid19.ca.gov/vaccines/#California-vaccines-dashboard
Illinois 100 12.46 41 11.41 https://www.dph.illinois.gov/covid19/vaccinedata?county=Illinois
Indiana 88 6.62 37 5.31 https://www.coronavirus.in.gov/vaccine/2680.htm
Maine 16 1.34 8 1.01 https://www.maine.gov/covid19/vaccines/dashboard
New Jersey 21 8.88 21 8.88 https://www.nj.gov/health/cd/topics/covid2019_dashboard.shtml
New York 62 19.45 48 18.79 https://covid19vaccine.health.ny.gov/covid-19-vaccine-tracker
North Carolina 43 8.56 43 8.56 https://covid19.ncdhhs.gov/dashboard/data-behind-dashboards
Ohio 88 11.69 57 10.57 https://coronavirus.ohio.gov/wps/portal/gov/covid-19/dashboards/covid-19-vaccine/covid-19-vaccination-dashboard
Oregon 23 4.05 11 3.22 https://public.tableau.com/profile/oregon.health.authority.covid.19#!/vizhome/OregonCOVID-19VaccinationTrends/OregonCountyVaccinationTrends
Pennsylvania 60 12.68 40 11.66 https://www.health.pa.gov/topics/disease/coronavirus/Vaccine/Pages/Vaccine.aspx
South Carolina 46 5.15 46 5.15 https://scdhec.gov/covid19/covid-19-vaccination-dashboard
Tennessee 90 6.77 62 6.11 https://www.tn.gov/health/cedep/ncov/data/downloadable-datasets.html
Texas 236 27.66 137 26.71 https://tabexternal.dshs.texas.gov/t/THD/views/COVID-19VaccineinTexasDashboard/Summary?%3Aorigin=card_share_link&%3Aembed=y&%3AisGuestRedirectFromVizportal=y
Virginia 132 8.53 111 8.21 https://www.vdh.virginia.gov/coronavirus/covid-19-vaccine-demographics/
West Virginia 55 1.79 23 1.27 https://dhhr.wv.gov/COVID-19/Pages/default.aspx
Wisconsin 72 5.82 28 4.69 https://www.dhs.wisconsin.gov/covid-19/vaccine-data.htm#day
Sum 1186 180.92 756 170.65

Note. Valid counties are those that were included in our main regression analyses, following the exclusion criteria outlined below in the sample construction figure.

The data is in DataInfo/6NHWhiteStatesVS10WhiteStates.csv data.

756 counties in the main analysis 744 counties excluding the high mobility counties
State Total White Hispanic White Hispanic White Rate Total White Hispanic White Hispanic White Rate
States Reporting Non-Hispanic White Vaccination Rate
California 28368445 13994237 0.4933 18971980 8669768 0.4570
Illinois 9551335 2019602 0.2114 9551335 2019602 0.2114
New Jersey 6388804 1537809 0.2407 5953609 1297376 0.2179
Oregon 3506031 466847 0.1332 3506031 466847 0.1332
Texas 21507737 9654049 0.4489 21031458 9520356 0.4527
Virginia 5917616 694680 0.1174 5905834 688349 0.1166
States Reporting Whole White Vaccination Rate
Indiana 5602889 429126 0.0766 5602889 429126 0.0766
Maine 1269326 19729 0.0155 1269326 19729 0.0155
New York 13546776 2791356 0.2061 9153734 1080290 0.1180
North Carolina 5918976 741346 0.1252 5918976 741346 0.1252
Ohio 9552736 383644 0.0402 9552736 383644 0.0402
Pennsylvania 10329505 752025 0.0728 10329505 752025 0.0728
South Carolina 3532048 254506 0.0721 3132671 210947 0.0673
Tennessee 5297436 333856 0.0630 5297436 333856 0.0630
West Virginia 1675122 26610 0.0159 1675122 26610 0.0159
Wisconsin 5067781 358716 0.0708 5067781 358716 0.0708

Figure S1. Map represents COVID-19 vaccination disparities across 1,186 counties with data by race as of April 19, 2021. Red indicates higher vaccination rates among Whites, and blue indicates higher vaccination rates among Blacks. The vaccination rate in some counties with small numbers of Blacks or Whites exceeded 100%. We exclude those counties in Figure 1. In the regression using data from 756 counties, the range of vaccination disparity is between -52.0% and 66.2%.

Figure S2. Patterns of missingness in predictor and outcome variables where white lines indicate values are missing.

The filtering of the data collected for all counties on April 19, 2021. The same method is also applied to the data on March 27 2021, April 07 2021, May 20 2021.

Figure S3. Flowchart depicting sample construction.

We present descriptive statistics of the variables in our regression analysis in non-standardized units. The table below presents rate and proportion data as percentages for ease of interpretation.

The data is in DataInfo/IndependentVarSource.csv data.

Variable Description Source Data Field count mean std min 0.250 0.500 0.750 max
CVD Covid vaccination disparity between White and Black populations in county i. Department of Health in each state Vax_DisparityY 756 12.119 10.355 -18.168 4.922 10.451 17.757 53.842
FVD Flu vaccination disparity between White and Black populations in county i. CMS Mapping Medical Disparity Tool (https://data.cms.gov/mapping-medicare-disparities) FluVax_DisparityY 756 15.185 6.445 -12.000 12.000 16.000 19.000 37.000
Median Income Household median income (in thousands) in county i. 2019 ACS 5-Year Estimates Subject Tables MedianIncome 756 58.448 16.597 27.063 48.006 54.517 64.081 142.299
Median Income Disparity Household median income disparity (in thousands) between White and Black populations in county i. 2019 ACS 5-Year Estimates Subject Tables MedianIncome_Disparity 756 21.003 16.109 -67.705 13.660 21.828 29.514 112.332
High School Graduation Rate Rate of high school or above education attainment in county i. 2019 ACS 5-Year Estimates Subject Tables HighSchool_Rate 756 86.931 5.305 61.800 83.975 87.900 90.900 96.800
High School Disparity High school or above education attainment disparity between White and Black populations in county i. 2019 ACS 5-Year Estimates Subject Tables HighSchool_Disparity 756 6.762 7.881 -30.300 2.400 6.200 10.700 42.200
Health Facilities Per Capita Number of potential health facilities which provide COVID-19 vaccine per person in county i. VaxMap 2.0 (https://www.westhealth.org/resource/vaxmap-potential-covid-19-vaccine-locations/) FacNumRate 756 0.024 0.012 0.000 0.017 0.021 0.026 0.098
COVID-19 Cases Per Capita Number of COVID-19 cases per person in county i by April 19th, 2021 The Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (https://github.com/CSSEGISandData/COVID-19) CaseRate 756 9.469 2.657 2.235 7.720 9.527 11.116 24.159
Home IT Rate Rate of computer ownership and internet in the home in county i. 2019 ACS 5-Year Estimates Subject Tables IT_Rate 756 82.684 7.053 55.600 78.775 83.400 87.600 97.000
Home IT Disparity Computer ownership and internet in the home disparity between White and Black populations in county i. 2019 ACS 5-Year Estimates Subject Tables IT_Disparity 756 8.308 10.520 -21.900 2.100 7.700 14.000 72.300
Urban Dummy variable that equals 1 if county i is located in an urban area. CMS Mapping Medical Disparity Tool (https://data.cms.gov/mapping-medicare-disparities) urban 756 0.603 0.490 0.000 0.000 1.000 1.000 1.000
Rate of Vehicle Ownership Rate of households with vehicles in county i. CDC Social Vulnerability Index (https://www.atsdr.cdc.gov/placeandhealth/svi/index.html) vehicle 756 92.914 4.962 23.000 91.800 93.700 95.200 98.600
Political Ideology Rate of people who voted Republican in 2020 presidential election in county i. USA Today (https://www.usatoday.com/in-depth/graphics/2020/11/10/election-maps-2020-america-county-results-more-voters/6226197002/) republican_rate 756 58.749 16.065 11.249 48.080 60.414 71.550 89.324
Segregation Index The degree to which Black and White groups live separately from one another in county i. 2021 County Health Rankings (https://www.countyhealthrankings.org/explore-health-rankings/measures-data-sources/county-health-rankings-model/health-factors/social-and-economic-factors/family-social-support/residential-segregation-blackwhite) Segregation 756 44.852 16.125 0.041 33.277 45.831 56.441 86.159
Racial Bias Weighted implicit racial bias in county i. Data from Riddle and Sinclair (2019; https://osf.io/pu79a/) racial_weighted_bias 756 39.993 1.879 31.156 39.199 40.177 40.888 44.453
Vaccine Hesitancy COVID-19 vaccine hesitancy in county i. Department of Health and Human Services, Office of the Assistant Secretary for Planning and Evaluation (https://aspe.hhs.gov/pdf-report/vaccine-hesitancy) hesitancy 756 17.677 3.798 7.000 15.000 18.000 20.000 27.000
Proportion of Black Residents Proportion of black residents in county i. County Population by Characteristics: 2010-2019 (https://www.census.gov/data/tables/time-series/demo/popest/2010s-counties-detail.html) Black_Prop 756 12.397 13.136 0.541 3.103 7.429 16.913 76.973
Flu Vaccination Rate Rate of flu vaccination among Medicare beneficiaries in county i. CMS Mapping Medical Disparity Tool (https://data.cms.gov/mapping-medicare-disparities) FluVax_Rate 756 47.622 7.552 19.000 43.000 49.000 53.000 65.000
Flu Vaccination Disparity Flu vaccination disparity between White and Black Medicare beneficiaries in county i. CMS Mapping Medical Disparity Tool (https://data.cms.gov/mapping-medicare-disparities) FluVax_Disparity 756 15.185 6.445 -12.000 12.000 16.000 19.000 37.000
Proportion of Pop. Above Age 75 Rate of Age >=75 population in county i. County Population by Characteristics: 2010-2019 (https://www.census.gov/data/tables/time-series/demo/popest/2010s-counties-detail.html) Above75_Rate 756 7.680 1.844 3.515 6.469 7.697 8.758 17.853
Above Age 75 Disparity Age >= 75 population disparity between white and black people in county i. County Population by Characteristics: 2010-2019 (https://www.census.gov/data/tables/time-series/demo/popest/2010s-counties-detail.html) Above75_Disparity 756 4.583 2.452 -4.481 3.099 4.717 5.966 17.401
Proportion of Pop. Above Age 15 Below 74 Rate of 15 <= age <= 74 population in county i. County Population by Characteristics: 2010-2019 (https://www.census.gov/data/tables/time-series/demo/popest/2010s-counties-detail.html) A15T74_Rate 756 74.389 2.144 65.922 73.190 74.299 75.436 83.149
Age 15 <= Age <= 74 Disparity 15 <= age <= 74 population disparity between white and black people in county i. County Population by Characteristics: 2010-2019 (https://www.census.gov/data/tables/time-series/demo/popest/2010s-counties-detail.html) A15T74_Disparity 756 -0.433 4.311 -20.894 -1.974 0.064 1.996 17.110
Test Positivity Rate of Nucleic Acid Amplification Tests (NAATs) positivity in county i. CDC COVID-19 Integrated County View (https://covid.cdc.gov/covid-data-tracker/#county-view) Positivity 756 6.334 3.765 0.000 3.828 5.760 8.433 26.080

Figure S4. A correlation matrix heatmap illustrate bivariate relationships among all variables in our main regression results and robustness checks.

Below, we provide the regression table presented in Agarwal et al. (2021) for comparison to the robustness checks.

You can get the stata code to do this regression by:

python statacode.py --task main_regression 
python statacode.py --task main_regression_originalX

or directly check the data and stata code in the folder StataCode/main_regression code and StataCode/main_regression_originalX code.

(A1) standardized-predictor (A2) standardized-predictor (B1) original-predictor (B2) original-predictor
VARIABLES CVD (April 19, 2021) FVD (2019) CVD (April 19, 2021) FVD (2019)
Economic Stability
Median Income -2.196* 1.135+ -0.132* 0.0684+
(0.987) (0.611) (0.0595) (0.0368)
Median Income Disparity 0.888+ 0.884+ 0.0551+ 0.0549+
(0.439) (0.431) (0.0272) (0.0268)
Education Access and Quality
High School Graduation Rate 1.219 0.0298 0.230 0.00562
(1.191) (0.284) (0.225) (0.0534)
High School Disparity 2.013*** 0.190 0.255*** 0.0241
(0.408) (0.338) (0.0518) (0.0428)
Healthcare Access and Quality
Health Facilities Per Capita 0.782 -0.297 66.12 -25.15
(0.762) (0.382) (64.46) (32.32)
COVID-19 Cases Per Capita -0.0764 0.352 -0.0287 0.133
(0.751) (0.260) (0.283) (0.0979)
Neighborhood and Built Environment
Home IT Rate 0.514 0.418 0.0729 0.0593
(0.772) (0.431) (0.109) (0.0612)
Home IT Disparity 0.199 0.247 0.0189 0.0235
(0.989) (0.438) (0.0940) (0.0416)
Urban 0.185 0.00119 0.185 0.00119
(1.226) (0.695) (1.226) (0.695)
Rate of Vehicle Ownership 2.069 -0.178 0.417 -0.0358
(1.284) (0.665) (0.259) (0.134)
Social and Community Context
Political Ideology -6.451** -1.523*** -0.402** -0.0948***
(1.728) (0.373) (0.108) (0.0232)
Segregation 1.426+ 0.595+ 0.0884+ 0.0369+
(0.692) (0.318) (0.0429) (0.0197)
Racial Bias 1.431+ 0.307 0.762+ 0.164
(0.733) (0.382) (0.390) (0.203)
Covariates
Vaccine Hesitancy 1.905 -0.248 0.501 -0.0653
(1.764) (0.674) (0.464) (0.177)
Proportion of Black Pop. -5.243* 0.293 -0.399* 0.0223
(2.057) (0.549) (0.157) (0.0418)
Constant 8.286*** 13.46*** -67.82 3.475
(1.437) (0.916) (39.98) (9.724)
Observations 756 756 756 756
Covered Population (million) 170.650 170.650 170.650 170.650
Covered Population (proportion) 0.515 0.515 0.515 0.515
R-squared 0.673 0.463 0.673 0.463
State Dummies True True True True
Robust Standard Error True True True True
Clustered at State Level True True True True
Weighted with County Population True True True True

Below, we report regression tables controlling for proportion of population above age 75 and disparities in the proportion of population above age 75 for the White and Black population. We add this variable as a control to account for the fact that older adults were prioritized early on in the vaccine rollout. In addition, we add additional control variables to account for the population that was eligible for the vaccines. Based on available demographic data, we approximate the vaccine eligible population by controlling for the proportion of population ages 15-74 in one set of analyses and the proportion of population ages 20-74 in a second set of analyses.

You can get the stata code to do this regression by:

python statacode.py --task check_age_all 
python statacode.py --task check_age_above15 
python statacode.py --task check_age_above20 

or directly check the data and stata code in the folder StataCode/check_age_all, StataCode/check_age_above15, and StataCode/check_age_above20.

(A1) (A2) (A3) (A4) age 15~74 (A5) age 20~74 (B1) (B2) (B3) (B4) age 15~74 (B5) age 20~74 (C1) (C2) (C3) (C4) age 15~74 (C5) age 20~74
VARIABLES CVD CVD CVD CVD CVD CVD 15+ CVD 15+ CVD 15+ CVD 15+ CVD 15+ CVD 20+ CVD 20+ CVD 20+ CVD 20+ CVD 20+
Economic Stability
Median Income -2.196* -2.819** -1.795** -1.126* -0.924 -2.114 -2.741* -1.686* -1.314+ -1.059 -2.054 -2.731* -1.653+ -1.334+ -1.210
(0.987) (0.817) (0.561) (0.506) (0.543) (1.235) (1.004) (0.687) (0.647) (0.683) (1.396) (1.128) (0.791) (0.747) (0.786)
Median Income Disparity 0.888+ 0.542 0.988* 0.875+ 0.888+ 1.018+ 0.646 1.097+ 0.983+ 0.998+ 1.063+ 0.659 1.117+ 0.996+ 1.024+
(0.439) (0.503) (0.457) (0.436) (0.436) (0.506) (0.571) (0.516) (0.499) (0.493) (0.544) (0.614) (0.542) (0.527) (0.519)
Education Access and Quality
High School Graduation Rate 1.219 1.115 1.353 1.431 1.334 1.287 1.198 1.534 1.717 1.574 1.394 1.299 1.685 1.904 1.757
(1.191) (1.089) (1.147) (1.156) (1.115) (1.367) (1.248) (1.308) (1.318) (1.280) (1.427) (1.297) (1.355) (1.370) (1.333)
High School Disparity 2.013*** 1.905*** 1.699** 1.859** 1.991*** 2.343*** 2.235*** 2.032** 2.171** 2.274*** 2.641*** 2.525*** 2.321** 2.463** 2.519***
(0.408) (0.378) (0.519) (0.490) (0.481) (0.460) (0.438) (0.560) (0.576) (0.558) (0.503) (0.480) (0.598) (0.621) (0.605)
Healthcare Access and Quality
Health Facilities Per Capita 0.782 0.812 0.862 0.650 0.633 0.650 0.703 0.814 0.698 0.632 0.643 0.702 0.844 0.744 0.700
(0.762) (0.698) (0.746) (0.730) (0.728) (0.877) (0.797) (0.834) (0.843) (0.833) (0.948) (0.854) (0.888) (0.906) (0.895)
COVID-19 Cases Per Capita -0.0764 -0.110 -0.346 -0.389 -0.307 -0.0320 -0.0936 -0.379 -0.409 -0.368 0.0956 0.0269 -0.284 -0.313 -0.290
(0.751) (0.669) (0.641) (0.556) (0.591) (0.866) (0.791) (0.778) (0.691) (0.724) (0.966) (0.881) (0.876) (0.782) (0.816)
Neighborhood and Built Environment
Home IT Rate 0.514 0.424 0.119 -0.370 -0.317 0.297 0.183 -0.284 -0.482 -0.506 0.208 0.0821 -0.464 -0.601 -0.545
(0.772) (0.833) (0.974) (0.886) (0.807) (0.945) (1.005) (1.155) (1.007) (0.939) (1.004) (1.071) (1.212) (1.037) (0.980)
Home IT Disparity 0.199 0.0151 0.459 -0.130 -0.252 -0.234 -0.410 0.0864 -0.212 -0.408 -0.371 -0.561 -0.0349 -0.277 -0.369
(0.989) (0.901) (0.705) (0.589) (0.602) (1.033) (0.939) (0.738) (0.702) (0.702) (1.079) (0.977) (0.778) (0.763) (0.768)
Urban 0.185 0.0214 -0.147 -0.980 -0.812 -0.149 -0.285 -0.582 -1.269 -1.177 -0.211 -0.357 -0.716 -1.405 -1.234
(1.226) (1.150) (0.837) (0.798) (0.875) (1.444) (1.366) (0.974) (0.945) (1.034) (1.569) (1.491) (1.071) (1.043) (1.121)
Rate of Vehicle Ownership 2.069 1.934 0.814 1.233 1.151 2.539+ 2.444+ 1.237 1.437 1.436 2.792+ 2.692+ 1.433 1.590 1.538
(1.284) (1.152) (1.226) (1.217) (1.205) (1.430) (1.325) (1.383) (1.363) (1.350) (1.491) (1.388) (1.418) (1.387) (1.376)
Social and Community Context
Political Ideology -6.451** -5.959** -5.262* -5.163** -5.133* -7.164** -6.610** -5.741* -5.872** -5.753* -7.691** -7.088** -6.130* -6.326** -6.227*
(1.728) (1.663) (1.788) (1.730) (1.761) (1.976) (1.892) (2.037) (1.985) (2.025) (2.086) (1.984) (2.135) (2.082) (2.137)
Segregation 1.426+ 1.219+ 1.433 1.391+ 1.332 1.721+ 1.492+ 1.808+ 1.786+ 1.769+ 1.836* 1.588+ 1.955+ 1.936+ 1.955+
(0.692) (0.673) (0.823) (0.792) (0.815) (0.810) (0.777) (0.941) (0.916) (0.958) (0.848) (0.806) (0.987) (0.963) (1.019)
Racial Bias 1.431+ 1.297* 0.806 0.551 0.632 1.507+ 1.366+ 0.843 0.628 0.653 1.638+ 1.485* 0.942 0.726 0.754
(0.733) (0.580) (0.592) (0.485) (0.427) (0.804) (0.645) (0.662) (0.573) (0.508) (0.834) (0.661) (0.671) (0.582) (0.532)
Covariates
Vaccine Hesitancy 1.905 2.109 1.720 1.574 1.718 2.246 2.439 1.890 1.758 1.844 2.558 2.767 2.136 2.001 2.067
(1.764) (1.619) (1.647) (1.605) (1.591) (2.073) (1.930) (1.954) (1.881) (1.862) (2.252) (2.096) (2.115) (2.029) (1.999)
Proportion of Black Pop. -5.243* -5.245* -5.031* -4.873* -4.770* -5.784* -5.813* -5.635* -5.670* -5.481* -6.150* -6.184* -6.021* -6.107* -5.941*
(2.057) (1.995) (1.968) (1.927) (1.874) (2.328) (2.279) (2.249) (2.233) (2.176) (2.465) (2.426) (2.392) (2.378) (2.338)
Robustness Checks
FluVax_WholeRate 0.774 0.0901 -0.136 -0.124 0.646 -0.0589 -0.196 -0.232 0.688 -0.0329 -0.155 -0.171
(0.595) (0.657) (0.687) (0.711) (0.778) (0.854) (0.856) (0.885) (0.911) (0.977) (0.963) (0.983)
FluVax_Disparity 2.088*** 1.665** 1.582* 1.664** 2.349*** 1.913** 1.888** 1.930** 2.558*** 2.112** 2.100** 2.138**
(0.456) (0.547) (0.544) (0.543) (0.472) (0.603) (0.613) (0.610) (0.487) (0.633) (0.650) (0.649)
Above75_WholeRate -1.025 -0.763 -0.606 -1.439 -1.274 -1.050 -1.647 -1.497 -1.298
(1.045) (0.884) (0.917) (1.170) (1.032) (1.060) (1.221) (1.087) (1.137)
Above75_Disparity 2.325* 2.742* 2.539* 2.507* 2.617* 2.539+ 2.615* 2.653* 2.535+
(0.995) (1.026) (1.050) (1.159) (1.173) (1.215) (1.211) (1.229) (1.270)
A15 (or 20) T74_WholeRate -0.389 -0.281 -0.794 -0.582 -0.939 -0.731
(0.588) (0.608) (0.698) (0.718) (0.748) (0.762)
A15 (or 20) T74_Disparity 2.319*** 2.472*** 1.530*** 1.863*** 1.418** 1.385**
(0.250) (0.360) (0.311) (0.439) (0.354) (0.463)
Constant 8.286*** 9.183*** 9.963*** 11.84*** 11.97*** 9.905*** 10.82*** 11.70*** 13.06*** 13.38*** 10.07*** 11.05*** 12.00*** 13.30*** 13.38***
(1.437) (1.391) (1.327) (1.213) (1.276) (1.658) (1.666) (1.539) (1.433) (1.512) (1.799) (1.837) (1.678) (1.586) (1.655)
Observations 756 756 756 756 756 756 756 756 756 756 756 756 756 756 756
Covered Population (million) 170.65 170.65 170.65 170.65 170.65 170.65 170.65 170.65 170.65 170.65 170.65 170.65 170.65 170.65 170.65
Covered Population (proportion) 0.5149 0.5149 0.5149 0.5149 0.5149 0.5149 0.5149 0.5149 0.5149 0.5149 0.5149 0.5149 0.5149 0.5149 0.5149
R-squared 0.673 0.692 0.711 0.728 0.730 0.668 0.685 0.703 0.711 0.713 0.667 0.684 0.702 0.709 0.708
State Dummies True True True True True True True True True True True True True True True
Robust Standard Error True True True True True True True True True True True True True True True
Clustered at State Level True True True True True True True True True True True True True True True
Weighted with County Population True True True True True True True True True True True True True True True

As additional robustness checks, we also model alternative operationlizations of disparity. Specifically, we model a ratio-based definition (White Vaccination Rate/Black Vaccination Rate), the log of that ratio, and an outcome that scales the absolute disparity by the overall vaccination rate of the White and Black populations in a given county.

You can get the stata code to do this regression by:

python statacode.py --task check_disparity_types 

or directly check the data and stata code in the folder StataCode/check_disparity_types.

(1) (2) (3) (4)
Variables Absolute Disparity Ratio Disparity Log Ratio Disparity Scaled Absolute Disparity
Economic Stability
Median Income -2.196* -0.224* -0.249* -0.260*
(0.987) (0.0786) (0.112) (0.113)
Median Income Disparity 0.888+ 0.0635 0.0525 0.0829
(0.439) (0.0698) (0.0461) (0.0584)
Education Access and Quality
High School Graduation Rate 1.219 0.0108 0.0433 0.0467
(1.191) (0.0907) (0.123) (0.152)
High School Disparity 2.013*** 0.258*** 0.256*** 0.197***
(0.408) (0.0463) (0.0464) (0.0430)
Healthcare Access and Quality
Health Facilities Per Capita 0.782 0.0140 0.0321 0.0173
(0.762) (0.0792) (0.0938) (0.0952)
COVID-19 Cases Per Capita -0.0764 0.0146 0.0343 0.0223
(0.751) (0.0666) (0.0766) (0.0620)
Neighborhood and Built Environment
Home IT Rate 0.514 0.0325 0.0676 0.105
(0.772) (0.0564) (0.0796) (0.101)
Home IT Disparity 0.199 -0.181 -0.0636 0.00680
(0.989) (0.150) (0.103) (0.0793)
Urban 0.185 0.00423 -0.00179 -0.00382
(1.226) (0.152) (0.178) (0.167)
Rate of Vehicle Ownership 2.069 0.130 0.211 0.262+
(1.284) (0.147) (0.164) (0.148)
Social and Community Context
Political Ideology -6.451** -0.387* -0.493** -0.537**
(1.728) (0.131) (0.152) (0.167)
Segregation 1.426+ 0.188** 0.241** 0.256**
(0.692) (0.0521) (0.0638) (0.0713)
Racial Bias 1.431+ 0.0536 0.0793 0.106
(0.733) (0.0849) (0.0919) (0.0840)
Covariates
Vaccine Hesitancy 1.905 0.120 0.173 0.202
(1.764) (0.163) (0.195) (0.209)
Proportion of Black Pop. -5.243* -0.348* -0.414* -0.353
(2.057) (0.159) (0.188) (0.206)
Constant 8.286*** -0.482** -0.484** -0.374*
(1.437) (0.147) (0.163) (0.149)
Observations 756 756 756 756
Covered Population (million) 170.65 170.65 170.65 170.65
Covered Population (proportion) 0.515 0.515 0.515 0.515
R-squared 0.673 0.552 0.551 0.563
State Dummies True True True True
Robust Standard Error True True True True
Clustered at State Level True True True True
Weighted with County Population True True True True

You can get the stata code to do this regression by:

python statacode.py --task diff_dates 

or directly check the data and stata code in the folder StataCode/diff_dates.

We compiled data from multiple time points (March 27, April 07, and May 20, 2021) to compare against our main findings based on data from April 19, 2021. In addition, we run the same model using full vaccination data from May 20, 2021 to explore whether our pattern of findings still hold.

(A) (B) (C) (D) (E) (F)
VARIABLES CVD (March 27, 2021) CVD (April 07, 2021) CVD (April 19, 2021) CVD (May 20, 2021) CVD - Full Dose (May 20, 2021) FVD (2019)
Economic Stability
Median Income -1.862* -2.209* -2.196* -1.519* -2.797** 1.135+
(0.698) (0.902) (0.987) (0.683) (0.742) (0.611)
Median Income Disparity 0.135 0.509 0.888+ 1.422* 1.240* 0.884+
(0.378) (0.381) (0.439) (0.577) (0.478) (0.431)
Education Access and Quality
High School Graduation Rate 1.43 1.358 1.219 0.623 -0.472 0.0298
(1.144) (1.181) (1.191) (1.305) (0.808) (0.284)
High School Disparity 1.707** 1.868*** 2.013*** 1.935** 1.057+ 0.190
(0.468) (0.386) (0.408) (0.611) (0.478) (0.338)
Healthcare Access and Quality
Health Facilities Per Capita 0.14 0.569 0.782 0.351 -0.967 -0.297
(0.421) (0.626) (0.762) (0.862) (0.772) (0.382)
COVID-19 Cases Per Capita 0.536 0.0487 -0.0764 0.727+ 0.981 0.352
(0.388) (0.759) (0.751) (0.408) (0.679) (0.260)
Neighborhood and Built Environment
Home IT Rate -0.383 -0.322 0.514 0.279 1.649*** 0.418
(0.528) (0.577) (0.772) (0.729) (0.326) (0.431)
Home IT Disparity 0.269 0.0619 0.199 0.721 -0.395 0.247
(0.666) (0.855) (0.989) (0.939) (0.547) (0.438)
Urban -1.142* 0.0583 0.185 -0.529 -0.356 0.00119
(0.457) (1.088) (1.226) (0.833) (0.329) (0.695)
Rate of Vehicle Ownership 1.514+ 2.705* 2.069 1.246 0.183 -0.178
(0.845) (1.027) (1.284) (1.632) (1.601) (0.665)
Social and Community Context
Political Ideology -4.694*** -5.529** -6.451** -7.413*** -4.060*** -1.523***
(1.07) (1.374) (1.728) (1.353) (0.644) (0.373)
Segregation 1.157* 1.496* 1.426+ 1.459+ 0.503 0.595+
(0.523) (0.59) (0.692) (0.751) (0.760) (0.318)
Racial Bias 1.031+ 1.416* 1.431+ 1.681* -0.118 0.307
(0.49) (0.631) (0.733) (0.733) (0.476) (0.382)
Covariates
Vaccine Hesitancy 0.734 1.487 1.905 2.207 -1.081 -0.248
(1.249) (1.599) (1.764) (1.548) (0.649) (0.674)
Proportion of Black Pop. -4.211* -4.603* -5.243* -7.212** -3.263+ 0.293
(1.453) (1.776) (2.057) (2.089) (1.747) (0.549)
Constant 4.937** 6.126* 8.286*** -1.078 5.825** 13.46***
(1.411) (2.155) (1.437) (2.606) (1.614) (0.916)
Observations 734 758 756 738 534 756
Covered Population (million) 156.46 171.71 170.65 156.06 84.96 170.65
Covered Population (proportion) 0.472 0.518 0.515 0.471 0.256 0.515
R-squared 0.822 0.655 0.673 0.748 0.706 0.463
State Dummies True True True True True True
Robust Standard Error True True True True True True
Clustered at State Level True True True True True True
Weighted with County Population True True True True True True

Some regions saw large rates of residential mobility (people moving in or out) during the course of the pandemic. To account for this, we collected data on areas that saw the greatest movement during the pandemic based on data from 75,000 moves (HireAHelper Migration Report, 2021). The list includes 10 cities with the greatest net increase in movement and the 10 cities with the greatest net decrease in movement, some of which are not represented in the counties included in our analysis. We exclude the 12 relevant counties represented in our data, and run additional robustness checks reported below.

You can get the stata code to do this regression by:

python statacode.py --task residential_mobility 

or directly check the data and stata code in the folder StataCode/residential_mobility.

(1) (2) (3) (4)
VARIABLES CVD CVD CVD CVD
Economic Stability
Median Income -2.584* -2.903** -2.108* -1.336+
(0.996) (0.892) (0.806) (0.738)
Median Income Disparity 1.074 0.789 1.204 1.112
(0.724) (0.656) (0.687) (0.743)
Education Access and Quality
High School Graduation Rate -0.583 -0.516 -0.510 -0.813
(0.754) (0.729) (0.622) (0.636)
High School Disparity 1.463*** 1.428*** 1.054** 1.164**
(0.282) (0.273) (0.318) (0.325)
Healthcare Access and Quality
Health Facilities Per Capita 0.283 0.425 0.257 0.141
(0.642) (0.634) (0.596) (0.557)
COVID-19 Cases Per Capita 0.469 0.353 0.000373 0.00252
(0.419) (0.473) (0.378) (0.332)
Neighborhood and Built Environment
Home IT Rate 1.446+ 1.252 1.517+ 0.989
(0.777) (0.823) (0.748) (0.656)
Home IT Disparity -0.515 -0.478 -0.102 -0.471
(0.770) (0.737) (0.676) (0.640)
Urban -0.372 -0.381 -0.174 -0.468
(0.487) (0.509) (0.584) (0.589)
Rate of Vehicle Ownership 0.721 0.903 0.00403 0.0895
(1.399) (1.221) (1.310) (1.258)
Social and Community Context
Political Ideology -6.399*** -5.948*** -5.567*** -5.068***
(0.977) (0.915) (0.975) (1.009)
Segregation 1.438* 1.243* 0.955 0.945
(0.550) (0.548) (0.685) (0.678)
Racial Bias 0.152 0.115 -0.216 -0.156
(0.543) (0.471) (0.463) (0.409)
Covariates
Vaccine Hesitancy 0.172 0.205 0.128 0.0404
(1.398) (1.284) (1.251) (1.150)
Proportion of Black Pop. -4.625* -4.821** -4.177* -3.994*
(1.700) (1.605) (1.558) (1.575)
Robustness Check
FluVax_WholeRate -0.155 -0.668 -0.905
(0.592) (0.542) (0.562)
FluVax_Disparity 2.111** 1.518** 1.473**
(0.601) (0.514) (0.486)
Above75_WholeRate -0.131 0.0752
(0.667) (0.625)
Above75_Disparity 2.539*** 3.108***
(0.564) (0.491)
A15T74_WholeRate 1.001*
(0.357)
A15T74_Disparity 1.436**
(0.358)
Constant 9.265*** 9.837*** 10.66*** 11.58***
(1.309) (1.293) (1.399) (1.498)
Observations 744 744 744 744
Covered Population (million) 146.00 146.00 146.00 146.00
Covered Population (proportion) 0.440 0.440 0.440 0.440
R-squared 0.750 0.764 0.783 0.791
State Dummies True True True True
Robust Standard Error True True True True
Clustered at State Level True True True True
Weighted with County Population True True True True

We include a variable measuring recent positivity rate (April 12-April 19).

You can get the stata code to do this regression by:

python statacode.py --task recent_positive_rate 

or directly check the data and stata code in the folder StataCode/recent_positive_rate.

(1) (2) (3) (4) (5)
VARIABLES CVD CVD CVD CVD CVD
Economic Stability
Median Income -2.196* -2.128* -2.766** -1.737** -1.086*
(0.987) (0.968) (0.789) (0.526) (0.476)
Median Income Disparity 0.888+ 0.914+ 0.568 1.017* 0.903+
(0.439) (0.434) (0.498) (0.448) (0.429)
Education Access and Quality
High School Graduation Rate 1.219 1.398 1.314 1.567 1.577
(1.191) (1.125) (1.032) (1.057) (1.072)
High School Disparity 2.013*** 2.041*** 1.933*** 1.729** 1.875**
(0.408) (0.423) (0.392) (0.543) (0.501)
Healthcare Access and Quality
Health Facilities Per Capita 0.782 0.864 0.898 0.956 0.723
(0.762) (0.750) (0.704) (0.760) (0.730)
COVID-19 Cases Per Capita -0.0764 0.0534 0.0548 -0.175 -0.258
(0.751) (0.748) (0.650) (0.610) (0.531)
Neighborhood and Built Environment
Home IT Rate 0.514 0.362 0.252 -0.0718 -0.520
(0.772) (0.737) (0.795) (0.928) (0.835)
Home IT Disparity 0.199 0.244 0.0559 0.505 -0.0962
(0.989) (0.971) (0.883) (0.686) (0.575)
Urban 0.185 0.0242 -0.190 -0.376 -1.124
(1.226) (1.278) (1.202) (0.865) (0.811)
Rate of Vehicle Ownership 2.069 2.097 1.942 0.818 1.238
(1.284) (1.277) (1.145) (1.245) (1.232)
Social and Community Context
Political Ideology -6.451** -6.552** -6.087** -5.387** -5.236**
(1.728) (1.722) (1.640) (1.772) (1.723)
Segregation 1.426+ 1.378+ 1.164 1.380 1.352
(0.692) (0.697) (0.679) (0.822) (0.796)
Racial Bias 1.431+ 1.321 1.164+ 0.664 0.452
(0.733) (0.759) (0.590) (0.604) (0.513)
Covariates
Vaccine Hesitancy 1.905 1.857 2.067 1.667 1.540
(1.764) (1.778) (1.623) (1.652) (1.614)
Proportion of Black Pop. -5.243* -5.249* -5.239* -5.027* -4.856*
(2.057) (2.030) (1.962) (1.933) (1.907)
Robustness Check
Recent_Positivity 0.713+ 0.842* 0.886* 0.671*
(0.385) (0.334) (0.311) (0.313)
FluVax_WholeRate 0.874 0.194 -0.0549
(0.596) (0.666) (0.693)
FluVax_Disparity 2.058*** 1.632* 1.556*
(0.467) (0.567) (0.563)
Above75_WholeRate -1.049 -0.784
(1.042) (0.883)
Above75_Disparity 2.336* 2.763*
(1.004) (1.040)
A15T74_WholeRate -0.319
(0.595)
A15T74_Disparity 2.280***
(0.242)
Constant 8.286*** 8.224*** 9.145*** 9.929*** 11.77***
(1.437) (1.450) (1.405) (1.328) (1.184)
Observations 756 756 756 756 756
Covered Population (million) 170.65 170.65 170.65 170.65 170.65
Covered Population (proportion) 0.515 0.515 0.515 0.515 0.515
R-squared 0.673 0.674 0.694 0.713 0.729
State Dummies True True True True True
Robust Standard Error True True True True True
Clustered at State Level True True True True True
Weighted with County Population True True True True True

We reviewed the Variable Inflation Rate (VIF) for our main regression model, finding that vaccine hesitancy had a VIF that exceeds the suggested cut-off value of 10. To assess how much the multicollinearity may have an impact on our findings, we try models excluding vaccine hesitancy, and report those below.

You can get the stata code to do this regression by:

python statacode.py --task avoid_collinearity 

or directly check the data and stata code in the folder StataCode/avoid_collinearity.

(1) (2) (3) (4)
VARIABLES CVD CVD CVD CVD
Economic Stability
Median Income -2.898*** -3.568*** -2.389*** -1.666**
(0.659) (0.486) (0.496) (0.504)
Median Income Disparity 0.881+ 0.538 0.977+ 0.863+
(0.468) (0.538) (0.473) (0.445)
Education Access and Quality
High School Graduation Rate 1.194 1.096 1.383 1.463
(1.246) (1.158) (1.212) (1.226)
High School Disparity 2.107*** 2.013*** 1.790** 1.944**
(0.444) (0.409) (0.560) (0.526)
Healthcare Access and Quality
Health Facilities Per Capita 0.703 0.732 0.830 0.620
(0.788) (0.723) (0.763) (0.746)
COVID-19 Cases Per Capita -0.259 -0.320 -0.530 -0.557
(0.771) (0.709) (0.609) (0.529)
Neighborhood and Built Environment
Home IT Rate 0.452 0.350 -0.0139 -0.491
(0.874) (0.924) (1.136) (1.032)
Home IT Disparity 0.138 -0.0413 0.431 -0.157
(0.957) (0.872) (0.691) (0.584)
Urban 0.166 0.0168 -0.212 -1.050
(1.224) (1.146) (0.854) (0.836)
Rate of Vehicle Ownership 2.175 2.070+ 0.903 1.315
(1.275) (1.157) (1.280) (1.260)
Social and Community Context
Political Ideology -5.979** -5.438** -4.784* -4.731*
(1.636) (1.633) (1.684) (1.671)
Segregation 1.340+ 1.125+ 1.407+ 1.367+
(0.642) (0.633) (0.796) (0.765)
Racial Bias 1.469+ 1.342+ 0.836 0.575
(0.780) (0.630) (0.631) (0.522)
Covariates
Black_Prop -4.867* -4.841* -4.739* -4.609*
(1.908) (1.886) (1.847) (1.847)
Robustness Check
FluVax_WholeRate 0.697 0.0361 -0.187
(0.576) (0.626) (0.652)
FluVax_Disparity 2.096*** 1.675** 1.592*
(0.467) (0.566) (0.559)
Above75_WholeRate -1.213 -0.933
(0.987) (0.852)
Above75_Disparity 2.362* 2.774*
(0.975) (1.018)
A15T74_WholeRate -0.408
(0.622)
A15T74_Disparity 2.336***
(0.261)
Constant 2.753 4.717+ 2.270 2.389
(1.967) (2.407) (2.853) (2.740)
Observations 756 756 756 756
Covered Population (million) 170.65 170.65 170.65 170.65
Covered Population (proportion) 0.5149 0.5149 0.5149 0.5149
R-squared 0.670 0.689 0.709 0.726
State Dummies True True True True
Robust Standard Error True True True True
Clustered at State Level True True True True
Weighted with County Population True True True True

We split our sample into two subgroups, those that provide estimates for non-Hispanic White vaccination rates specifically (six states) and those that do not (ten states).

You can get the stata code to do this regression by:

python statacode.py --task subsample_analysis_6_and_10_states 

or directly check the data and stata code in the folder StataCode/subsample_analysis_6_and_10_states.

(A1) (A2) (A3) (A4) (B1) (B2) (B3) (B4)
VARIABLES CVD (6 States) CVD (6 States) CVD (6 States) CVD (6 States) CVD (10 States) CVD (10 States) CVD (10 States) CVD (10 States)
Economic Stability
Median Income -3.629* -3.456* -2.435+ -2.129 -0.968 -1.730** -0.571 0.0445
(1.050) (0.972) (1.191) (1.145) (0.554) (0.422) (0.520) (0.759)
Median Income Disparity -0.0801 -0.465 0.180 0.0878 1.444** 1.153* 1.448** 1.318*
(0.730) (0.713) (0.958) (0.908) (0.306) (0.446) (0.415) (0.480)
Education Access and Quality
High School Graduation Rate -1.726+ -1.571 -0.440 -0.336 3.656** 3.428*** 3.237** 3.345***
(0.774) (0.797) (0.946) (1.003) (0.914) (0.452) (0.713) (0.598)
High School Disparity 2.053** 2.103** 1.602* 1.943** 2.326** 1.966** 1.826** 1.797**
(0.419) (0.492) (0.495) (0.427) (0.630) (0.434) (0.516) (0.482)
Healthcare Access and Quality
Health Facilities Per Capita 1.899+ 2.018 1.313 1.220 0.825 1.186* 1.150* 0.818+
(0.918) (1.054) (0.960) (0.991) (0.662) (0.498) (0.443) (0.399)
COVID-19 Cases Per Capita -1.862 -2.076 -2.062 -2.013 0.486 -0.136 -0.570 -0.509
(1.225) (1.607) (1.233) (1.118) (0.633) (0.633) (0.646) (0.530)
Neighborhood and Built Environment
Home IT Rate 2.167 2.044 1.394 1.163 -0.356 -0.562 -0.261 -1.076*
(1.283) (1.453) (0.832) (0.907) (0.517) (0.586) (0.622) (0.459)
Home IT Disparity -1.085 -0.813 0.441 0.141 -0.124 -0.443 -0.567 -1.240
(1.015) (1.049) (0.904) (0.920) (0.858) (0.843) (0.775) (0.817)
Urban 0.767 0.715 -0.274 -0.671 -0.871+ -0.639 -0.373 -0.967
(2.324) (2.511) (1.565) (1.679) (0.435) (0.493) (0.588) (0.536)
Rate of Vehicle Ownership 3.324** 3.415** 1.841 2.127+ -0.763 -0.866 -1.282 -1.027
(0.717) (0.667) (1.143) (1.054) (1.100) (0.915) (1.242) (1.277)
Social and Community Context
Political Ideology -7.955** -7.566** -6.347** -6.304** -4.377** -3.250* -3.280* -2.644*
(1.592) (1.726) (1.515) (1.498) (1.177) (1.028) (1.084) (1.033)
Segregation 0.519 0.578 0.886 0.921 1.044 1.033 0.899 0.741
(0.758) (0.747) (0.626) (0.617) (0.695) (0.771) (0.946) (0.989)
Racial Bias 0.195 0.328 -0.411 -0.431 0.583 0.338 0.0975 0.0863
(1.196) (1.146) (1.173) (1.139) (0.731) (0.545) (0.530) (0.428)
Covariates
Vaccine Hesitancy 1.526+ 1.866+ 1.424 1.181 1.679 2.174 2.919* 2.787*
(0.729) (0.877) (0.819) (0.967) (1.677) (1.207) (1.018) (0.948)
Proportion of Black Pop. -2.945 -3.496 -3.175 -3.064 -4.998** -3.588* -2.850* -2.272+
(2.211) (1.879) (1.815) (1.785) (1.397) (1.442) (0.962) (1.098)
FluVax_WholeRate -0.863 -1.533* -1.662* 2.609*** 2.132** 1.943**
(0.594) (0.535) (0.552) (0.489) (0.515) (0.594)
FluVax_Disparity 1.957 1.326 1.454 1.133 0.823 0.685
(1.037) (1.026) (1.056) (0.711) (0.608) (0.483)
Proportion of Pop. Above Age 75 -2.302 -1.910 0.767 0.863
(1.302) (1.183) (0.636) (0.563)
Above Age 75 Disparity 4.077* 4.349* 1.288+ 1.752+
(1.109) (1.211) (0.648) (0.848)
A15T74_WholeRate -0.249 0.828
(0.490) (0.524)
A15T74_Disparity 1.437+ 2.028*
(0.592) (0.658)
Constant -2.454 -2.197 -4.491 -4.604 5.860** 8.972*** 7.267** 7.581**
(3.122) (3.231) (4.342) (4.262) (1.537) (1.829) (1.685) (1.882)
Observations 364 364 364 364 392 392 392 392
Covered Population (million) 101.03 101.03 101.03 101.03 79.89 79.89 79.89 79.89
Covered Population (proportion) 0.3048 0.3048 0.3048 0.3048 0.2410 0.2410 0.2410 0.2410
R-squared 0.736 0.744 0.779 0.783 0.699 0.735 0.750 0.773
State Dummies True True True True True True True True
Robust Standard Error True True True True True True True True
Clustered at State Level True True True True True True True True
Weighted with County Population True True True True True True True True

In this robustness check, we treat all the State in the same way in terms of calculate the COVID-19 White Vaccination Rate: Reported-CvdVax-White / Total-White-Population. Then we ran the models with different covariates. The results are consistent to the main regression.

You can get the stata code to do this regression by:

python statacode.py --task vax_rate_on_all_white 

or directly check the data and stata code in the folder StataCode/vax_rate_on_all_white.

(1) (2) (3) (4)
VARIABLES CVD (Whole White) CVD (Whole White) CVD (Whole White) CVD (Whole White)
Economic Stability
Median Income -2.016+ -2.684** -0.797 -0.0535
(1.030) (0.753) (1.100) (1.057)
Median Income Disparity -0.0930 -0.453 0.401 0.338
(0.548) (0.448) (0.475) (0.463)
Education Access and Quality
High School Graduation Rate -0.736 -0.855 -0.789 -0.847
(0.680) (0.687) (0.681) (0.705)
High School Disparity 2.012*** 1.896*** 1.481*** 1.704***
(0.334) (0.337) (0.341) (0.361)
Healthcare Access and Quality
Health Facilities Per Capita 1.422 1.443 1.290 1.109
(1.051) (0.982) (0.994) (0.980)
COVID-19 Cases Per Capita -0.0752 -0.0984 -0.361 -0.315
(1.076) (0.969) (0.825) (0.799)
Neighborhood and Built Environment
Home IT Rate 1.626+ 1.541 1.590* 1.146+
(0.859) (0.935) (0.651) (0.585)
Home IT Disparity -0.0985 -0.299 0.359 -0.262
(1.215) (1.095) (0.851) (0.798)
Urban 0.474 0.285 0.474 -0.00278
(1.166) (1.076) (0.867) (0.806)
Rate of Vehicle Ownership 2.073 1.909 0.0661 0.387
(1.386) (1.174) (1.122) (1.086)
Social and Community Context
Political Ideology -6.491*** -5.993*** -5.320** -5.126**
(1.414) (1.366) (1.510) (1.479)
Segregation 0.810 0.599 0.608 0.495
(0.662) (0.668) (0.719) (0.703)
Racial Bias 0.987 0.846+ 0.0132 -0.0837
(0.623) (0.450) (0.319) (0.242)
Covariates
Vaccine Hesitancy 0.225 0.449 0.337 0.370
(1.007) (0.862) (0.816) (0.782)
Proportion of Black Pop. -3.135 -3.124 -2.558 -2.308
(1.877) (1.880) (1.687) (1.701)
Robustness Check
FluVax_WholeRate 0.895 -0.361 -0.529
(0.668) (0.616) (0.675)
FluVax_Disparity 2.116*** 1.338* 1.324**
(0.491) (0.482) (0.445)
Above75_WholeRate -0.343 -0.0553
(1.150) (1.063)
Above75_Disparity 3.824*** 4.104***
(0.597) (0.556)
A15T74_WholeRate 0.0635
(0.407)
A15T74_Disparity 2.046***
(0.429)
Constant 10.15*** 11.11*** 12.22*** 13.74***
(1.725) (1.592) (1.459) (1.439)
Observations 756 756 756 756
Covered Population (million) 170.65 170.65 170.65 170.65
Covered Population (proportion) 0.5149 0.5149 0.5149 0.5149
R-squared 0.693 0.712 0.758 0.770
State Dummies True True True True
Robust Standard Error True True True True
Clustered at State Level True True True True
Weighted with County Population True True True True

About

Source code and Supplementary materials @PNAS2021 paper: Covid19 Vaccination Race Disparity Study.

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •