Skip to content

Commit

Permalink
support parallel reward function
Browse files Browse the repository at this point in the history
  • Loading branch information
root committed Nov 17, 2023
1 parent fd3d95b commit aa85988
Show file tree
Hide file tree
Showing 2 changed files with 41 additions and 27 deletions.
60 changes: 36 additions & 24 deletions trlx/trainer/accelerate_base_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -419,8 +419,9 @@ def evaluate(self): # noqa: C901
if not self.config.train.reward_only_in_main_process or self.accelerator.is_main_process:
str_samples, str_prompts, str_outputs = self.decode(all_prompts, all_samples, all_prompt_sizes)

columns = ["prompt", "output"]
columns_data = [str_prompts, str_outputs]
if not self.config.train.reward_only_in_main_process:
columns_data = self.accelerator.gather_for_metrics(columns_data)

metadata, *xs = all_metadata
for k in metadata:
Expand All @@ -443,41 +444,52 @@ def evaluate(self): # noqa: C901
rewards = torch.tensor([sum(reward) for reward in rewards], dtype=float)
else:
rewards = torch.tensor(rewards, dtype=float)
mean_reward = rewards.mean().item()
columns.append("reward")
if not isinstance(rewards, list):
rewards = rewards.tolist()
columns_data.append(rewards)
stats[f"reward/mean{sweep_suffix}"] = mean_reward

if not self.config.train.reward_only_in_main_process:
rewards = self.accelerator.gather(rewards)
if self.accelerator.is_main_process:
mean_reward = rewards.mean().item()

columns = ["prompt", "output", "reward"]
if not isinstance(rewards, list):
rewards = rewards.tolist()
columns_data.append(rewards)
stats[f"reward/mean{sweep_suffix}"] = mean_reward

# additionally log any other metrics
if self.metric_fn:
logger.info("Computing metrics")
metric_time = time()
metrics = self.metric_fn(samples=str_samples, prompts=str_prompts, outputs=str_outputs, **metadata)
stats["time/metric"] = time() - metric_time
if not self.config.train.reward_only_in_main_process:
metrics = self.accelerator.gather_for_metrics(metrics)

mean_metrics = {
f"metrics/{k}{sweep_suffix}": torch.as_tensor(xs).mean(-1).item() for k, xs in metrics.items()
}
if self.accelerator.is_main_process:
stats["time/metric"] = time() - metric_time

stats.update(mean_metrics)
mean_metrics = {
f"metrics/{k}{sweep_suffix}": torch.as_tensor(xs).mean(-1).item()
for k, xs in metrics.items()
}

for metric, values in metrics.items():
# Skip metrics that are scalers since they represent aggregated values
if isinstance(values, float):
continue
columns.append(metric)
if not isinstance(values, list):
values = values.tolist()
columns_data.append(values)
stats.update(mean_metrics)

for metric, values in metrics.items():
# Skip metrics that are scalers since they represent aggregated values
if isinstance(values, float):
continue
columns.append(metric)
if not isinstance(values, list):
values = values.tolist()
columns_data.append(values)

# Prepend the sweep argument along with samples
if self.generate_sweep_kwarg:
columns.insert(0, gen_sweep_arg)
columns_data.insert(0, [gen_sweep_value] * len(samples))
if self.accelerator.is_main_process:
if self.generate_sweep_kwarg:
columns.insert(0, gen_sweep_arg)
columns_data.insert(0, [gen_sweep_value] * len(samples))

table.append(list(zip(*columns_data)))
table.append(list(zip(*columns_data)))

# Log and display evaluation metrics
logger.info("Summarizing evaluation")
Expand Down
8 changes: 5 additions & 3 deletions trlx/trainer/accelerate_ppo_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -344,17 +344,19 @@ def make_experience(self, num_rollouts: int = 1024, iter_count: int = 0): # noq
if torch.distributed.is_initialized():
torch.distributed.broadcast(max_len, 0)
scores = torch.empty((len(samples), max_len), device=device)
torch.distributed.scatter(scores, all_scores)
torch.distributed.scatter(scores, all_scores) # scores is one shard of one process after scatter
else:
scores = all_scores[0].clone().detach()
scores = all_scores[0].clone().detach() # shard of one process
else:
scores = all_scores
scores = all_scores.clone().detach() # shard of one process
# `all_scores` no longer used, no need to gather it
scores_mask = scores != -np.inf

if self.config.train.reward_only_in_main_process:
_, _, str_outputs = self.decode(prompt_tensors, samples, append_eos_token=True)
else:
str_outputs = all_str_outputs
# `all_str_outputs` no longer used, no need to gather it

# Pad the sample outputs
outputs = self.tokenizer(str_outputs).input_ids
Expand Down

0 comments on commit aa85988

Please # to comment.