-
Notifications
You must be signed in to change notification settings - Fork 7
The official Inferelator repository maintained by current or former Bonneau lab members
License
ChristophH/Inferelator
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Call the inferelator script from the base directory (the one containing this README) with a job config file as argument. Example call: Rscript inferelator.R jobs/dream4_cfg.R -------------------------------------------------------------------------------- Default parameters and a brief explanation of each one -------------------------------------------------------------------------------- PARS$input.dir <- 'input/dream4' # path to the input files PARS$exp.mat.file <- 'expression.tsv' # required; see definition below PARS$tf.names.file <- 'tf_names.tsv' # required; see definition below PARS$meta.data.file <- 'meta_data.tsv' # assume all steady state if NULL PARS$priors.file <- 'gold_standard.tsv' # no priors if NULL PARS$gold.standard.file <- 'gold_standard.tsv' # no evaluation if NULL PARS$leave.out.file <- NULL # file with list of conditions that will be ignored PARS$randomize.expression <- FALSE # whether to scramble input expression PARS$job.seed <- 42 # random seed; can be NULL PARS$save.to.dir <- file.path(PARS$input.dir, date.time.str) # output directory PARS$num.boots <- 20 # number of bootstraps; no bootstrapping with a value of 1 PARS$max.preds <- 10 # max number of predictors based on CLR to pass to model # selection method PARS$mi.bins <- 10 # number of bins to use for mutual information calculation PARS$cores <- 8 # number of cpu cores PARS$delT.max <- 110 # max number of time units allowed between time series # conditions PARS$delT.min <- 0 # min number of time units allowed between time series # conditions PARS$tau <- 45 # constant related to half life of mRNA (see Core model) PARS$perc.tp <- 0 # percent of true priors that will be used; can be vector PARS$perm.tp <- 1 # number of permutations of true priors PARS$perc.fp <- 0 # percent of false priors (100 = as many false priors as # there are true priors); can be vector PARS$perm.fp <- 1 # number of permutations of false priors PARS$pr.sel.mode <- 'random' # prior selection mode: 'random' or 'tf' # if 'random', the true priors are randomly chosen # from all priors edges, if 'tf', # PARS$perc.tp is interpreted as the percent of # TFs to use for true priors and all interactions # for the chosen TFs will be used PARS$eval.on.subset <- FALSE # whether to evaluate only on the part of the # network that has connections in the gold # standard; if TRUE false priors will only be # drawn from that part of the network PARS$method <- 'BBSR' # which method to use; either 'MEN' or 'BBSR' PARS$prior.weight <- 1 # the weight for the priors; has to be larger than 1 # for priors to have an effect PARS$use.tfa <- FALSE # whether to estimate transcription factor activities and # use those in the regression models # if TRUE, interactions in priors file shoud be signed, # i.e. -1 for repression and +1 for activation PARS$prior.ss <- FALSE # whether to also sub-sample from the prior matrix during # each bootstrap; if TRUE, priors are sampled randomly with # replacement; if FALSE, all priors are used as is PARS$output.summary <- TRUE # write a summary tsv and RData file of network PARS$output.report <- TRUE # create html network report PARS$output.tf.plots <- TRUE # create png files with plots of TFs and targets -------------------------------------------------------------------------------- Required Input Files -------------------------------------------------------------------------------- expression.tsv -------------- expression values; must include row (genes) and column (conditions) names tf_names.tsv ------------ one TF name on each line; must be subset of the row names of the expression data -------------------------------------------------------------------------------- Optional Input Files -------------------------------------------------------------------------------- meta_data.tsv ------------- the meta data describing the conditions; must include column names; has five columns: isTs: TRUE if the condition is part of a time-series, FALSE else is1stLast: "e" if not part of a time-series; "f" if first; "m" middle; "l" last prevCol: name of the preceding condition in time-series; NA if "e" or "f" del.t: time in minutes since prevCol; NA if "e" or "f" condName: name of the condition priors.tsv ---------- matrix of 0 and 1 indicating whether we have prior knowledge in the interaction of one TF and a gene; one row for each gene, one column for each TF; must include row (genes) and column (TF) names gold_standard.tsv ----------------- needed for validation; matrix of 0 and 1 indicating whether there is an interaction between one TF and a gene; one row for each gene, one column for each TF; must include row (genes) and column (TF) names -------------------------------------------------------------------------------- Output Files -------------------------------------------------------------------------------- One or more betas_frac_tp_X_perm_X--frac_fp_X_perm_X_X.RData files. One file per true and false prior and prior weight combination. Each RData file contains two lists of length PARS$num.boots where every entry is a matrix of betas and confidence scores (rescaled betas) respectively. One or more combinedconf_frac_tp_X_perm_X--frac_fp_X_perm_X_X.RData files with one matrix each. The matrix is the rank-combined version of the confidence scores of all bootstraps. A params_and_input.RData file with data objects holding the user set parameters, and input and input-derived objects.
About
The official Inferelator repository maintained by current or former Bonneau lab members
Resources
License
Stars
Watchers
Forks
Packages 0
No packages published