Skip to content

使用四种基本启发式算法(模拟退火、禁忌搜索、遗传算法与蚁群算法)求解广义旅行商(广义TSP/GTSP)问题。

Notifications You must be signed in to change notification settings

David-xar/GTSP_Heuristics

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 

Repository files navigation

简单说明

使用四种基本启发式算法求解广义TSP问题。

所谓广义TSP,即一些城市可能卖的是同一类商品,在买这类商品时仅走这些城市其中之一即可。

目录:

  • images - 只是一些结果图片

  • codes **

    • extendTSP.py

      用于随机生成广义TSP实例,并提供一些通用函数(如生成广义TSP实例,生成距离等)

    • SA.py 模拟退火

    • tabu.py 禁忌搜索

    • Genetic.py 遗传算法

    • ACO.py 蚁群算法

依赖:matplotlib + numpy,python3

可以通过extendTSP.py 中的 extendTSP_generate() 函数来生成实例

def extendTSP_generate(city_num, goods_num, x_range = 20, y_range = 20)
'''
city_num - 城市数量
goods_num - 商品种类数目
x_range, y_range - 坐标界限
'''

TODO list: 模块化代码; 效果优化(陷入局部最优原因分析等); 效率优化

​ 但大抵不会做了

效果示例

效果简单示例:以 39个城市,25种商品为例

除路径图外 还可以打印最优解迭代情况等

问题定义:

# city_num = 39
# goods_num = 25
# tuple: (city_position, goods_class, city_class)
# 各个城市坐标:
([(5, 13), (10, 5), (11, 9), (18, 9), (8, 3), (0, 10), (19, 17), (9, 17), (11, 12), (18, 3), (3, 4), (17, 11), (5, 2), (6, 12), (18, 7), (1, 7), (11, 4), (13, 1), (6, 15), (0, 3), (19, 2), (18, 10), (14, 1), (16, 3), (4, 3), (3, 15), (19, 11), (13, 13), (4, 4), (2, 9), (15, 7), (2, 15), (7, 18), (13, 14), (14, 0), (15, 15), (17, 3), (13, 16), (15, 9)], 
# 每个城市所卖的商品类别:
[11, 7, 2, 21, 11, 16, 6, 21, 9, 8, 9, 24, 23, 0, 6, 17, 18, 18, 5, 15, 4, 10, 12, 24, 12, 7, 20, 22, 3, 11, 19, 0, 4, 14, 13, 21, 1, 12, 9], 
# 按照商品类别对城市进行分类:
[[13, 31], [36], [2], [28], [20, 32], [18], [6, 14], [1, 25], [9], [8, 10, 38], [21], [0, 4, 29], [22, 24, 37], [34], [33], [19], [5], [15], [16, 17], [30], [26], [3, 7, 35], [27], [12], [11, 23]])

注:根据迭代次数等耗时会发生变化,下述结果以当前代码中默认次数及参数进行统计(非完全公平比较)

公平比较还是要限定一些条件的,若单纯根据迭代次数,由于模拟退火还需要控温,遗传算法和蚁群算法都有种群数量等因素,导致单纯的迭代次数本身可能不是那么公平;若考虑上述因素平衡各方实际执行次数,那么就需要先大体分析一下再选择一套比较合适的方案。 其实也可以直接把时间当成一个刻度来看待,看看最优解的收敛情况(以时间为横轴),同样的时间下评判哪个好还是比较直观的,或者说哪种算法通过较少时间就能达到更好的效果。

若还是考虑单次迭代效率,确实是有区别,例如仅考虑单次迭代(或某群体/某蚂蚁),蚁群算法可能消耗会多些,因为每只蚂蚁每走一步都要对剩余城市进行一次判断,这本身是阶乘级的复杂度,而使用轮盘可以缓解此种消耗,但由于还是需要固定判断n-1次(n为商品种类数量),并且使用轮盘也依然需要判断若干城市(随机),因此单次迭代的时间消耗理论上确实相较前几种会大些,但体现在效果上就不一定谁更出色了。

上述本质上是要比较每次迭代操作的多少,可以进行理论分析,当然跑一跑验证结论更真实。

蚁群算法若追求效率,可以考虑把 line 88 注释掉或进一步放宽条件,但一定程度会损失精度

两个版本效果不同仅在于显示方式,代码是一样的(统计中蚁群算法还算入了中间打印的开销、其他没有,可以去掉或者迭代一轮再打印[已改])

可使用 check_valid() 函数来验证解的正确性

def check_valid(goods_class, solution)
'''
goods_class - 城市所卖商品种类
solution - 解(list)的下标(不含回路)
'''

效果 - new

算法 耗时(s) 求解的最优距离
模拟退火 14.577972 81.80118610291628
禁忌搜索 1.214795 73.87283105707995
遗传算法 26.364176 76.73653745864254
蚁群算法 51.245369 80.70618234947098

结果图:

模拟退火:

解:[(19, 11), (18, 10), (18, 9), (15, 7), (17, 3), (18, 3), (19, 2), (14, 0), (11, 4), (10, 5), (5, 2), (4, 3), (4, 4), (3, 4), (0, 3), (1, 7), (0, 10), (5, 13), (6, 15), (6, 12), (11, 9), (13, 13), (13, 14), (19, 17), (17, 11), (19, 11)]

下标顺序:[26, 21, 3, 30, 36, 9, 20, 34, 16, 1, 12, 24, 28, 10, 19, 15, 5, 0, 18, 13, 2, 27, 33, 6, 11]

image-20201229102229949

禁忌搜索:

解:[(6, 15), (13, 14), (13, 13), (11, 9), (15, 7), (18, 10), (19, 11), (17, 11), (18, 9), (18, 7), (19, 2), (18, 3), (17, 3), (14, 0), (13, 1), (8, 3), (5, 2), (4, 3), (4, 4), (3, 4), (0, 3), (1, 7), (0, 10), (2, 15), (3, 15), (6, 15)]

下标顺序:[18, 33, 27, 2, 30, 21, 26, 11, 3, 14, 20, 9, 36, 34, 17, 4, 12, 24, 28, 10, 19, 15, 5, 31, 25]

image-20201229101859605

遗传算法:

解:[(18, 7), (17, 3), (18, 3), (19, 2), (14, 0), (14, 1), (11, 4), (10, 5), (8, 3), (5, 2), (4, 4), (3, 4), (0, 3), (1, 7), (0, 10), (6, 12), (6, 15), (13, 14), (13, 13), (11, 9), (15, 7), (17, 11), (18, 10), (19, 11), (18, 9), (18, 7)]

下标顺序:[14, 36, 9, 20, 34, 22, 16, 1, 4, 12, 28, 10, 19, 15, 5, 13, 18, 33, 27, 2, 30, 11, 21, 26, 3]

image-20201229103455457

蚁群算法:

解:

[(5, 2), (4, 3), (4, 4), (3, 4), (0, 3), (1, 7), (2, 9), (0, 10), (2, 15), (3, 15), (6, 15), (11, 9), (15, 7), (18, 7), (18, 9), (18, 10), (19, 11), (17, 11), (13, 13), (13, 14), (17, 3), (18, 3), (19, 2), (14, 0), (13, 1), (5, 2)]

下标顺序:[12, 24, 28, 10, 19, 15, 29, 5, 31, 25, 18, 2, 30, 14, 3, 21, 26, 11, 27, 33, 36, 9, 20, 34, 17]

image-20201229103103441

效果 - old

算法 耗时(s) 求解的最优距离
模拟退火 14.717047 81.91532259779534
禁忌搜索 1.294436 75.84301327322318
遗传算法 26.854897 77.5726497320684
蚁群算法 50.743670 80.70618234947098

结果图:

模拟退火:

解:[(1, 7), (0, 3), (3, 4), (4, 4), (5, 2), (8, 3), (10, 5), (11, 4), (14, 0), (14, 1), (19, 2), (18, 3), (17, 3), (15, 7), (18, 9), (18, 10), (17, 11), (19, 11), (19, 17), (13, 14), (13, 13), (11, 9), (6, 12), (6, 15), (0, 10), (1, 7)]

下标顺序:[15, 19, 10, 28, 12, 4, 1, 16, 34, 22, 20, 9, 36, 30, 3, 21, 11, 26, 6, 33, 27, 2, 13, 18, 5]

image-20201229023218927

禁忌搜索:

解:[(13, 13), (11, 9), (6, 12), (6, 15), (3, 15), (0, 10), (2, 9), (1, 7), (0, 3), (4, 4), (3, 4), (4, 3), (5, 2), (13, 1), (14, 0), (19, 2), (18, 3), (17, 3), (15, 7), (18, 7), (18, 9), (18, 10), (19, 11), (17, 11), (13, 14), (13, 13)]

下标顺序:[27, 2, 13, 18, 25, 5, 29, 15, 19, 28, 10, 24, 12, 17, 34, 20, 9, 36, 30, 14, 3, 21, 26, 11, 33]

image-20201229023326166

遗传算法:

解:[(6, 15), (6, 12), (0, 10), (1, 7), (0, 3), (4, 4), (5, 2), (8, 3), (10, 5), (11, 4), (14, 1), (14, 0), (17, 3), (18, 3), (19, 2), (18, 7), (18, 10), (19, 11), (17, 11), (15, 7), (11, 9), (11, 12), (13, 13), (13, 14), (9, 17), (6, 15)]

下标顺序:[18, 13, 5, 15, 19, 28, 12, 4, 1, 16, 22, 34, 36, 9, 20, 14, 21, 26, 11, 30, 2, 8, 27, 33, 7]

image-20201229023741776

蚁群算法:

解:[(5, 2), (4, 3), (4, 4), (3, 4), (0, 3), (1, 7), (2, 9), (0, 10), (2, 15), (3, 15), (6, 15), (11, 9), (15, 7), (18, 7), (18, 9), (18, 10), (19, 11), (17, 11), (13, 13), (13, 14), (17, 3), (18, 3), (19, 2), (14, 0), (13, 1), (5, 2)]

下标顺序:[12, 24, 28, 10, 19, 15, 29, 5, 31, 25, 18, 2, 30, 14, 3, 21, 26, 11, 27, 33, 36, 9, 20, 34, 17]

image-20201229033932590

About

使用四种基本启发式算法(模拟退火、禁忌搜索、遗传算法与蚁群算法)求解广义旅行商(广义TSP/GTSP)问题。

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%