-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
0b397e7
commit a11a818
Showing
3 changed files
with
201 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,201 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"df_s = pd.read_excel(\"syd_emotion.xlsx\")\n", | ||
"df_f = pd.read_excel(\"faiza_emotion.xlsx\")\n", | ||
"df_s[\"Relevant\"].fillna(0, inplace=True)\n", | ||
"df_f[\"Relevant\"].fillna(0, inplace=True)\n", | ||
"df_s[\"Emotion?\"].fillna(0, inplace=True)\n", | ||
"df_f[\"Emotion?\"].fillna(0, inplace=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
" Source categories _id created_at \\\n", | ||
"0 Statuses_Irma_C NaN 5c409973ec4ee50898175e81 12/3/2017 \n", | ||
"1 Statuses_Irma_A ['utility'] 5c11a746ec4ee522100a5b3b 9/15/2017 \n", | ||
"2 Statuses_Irma_A ['gov'] 5c0c5cf2ec4ee5221008263d 9/8/2017 \n", | ||
"3 Statuses_Irma_A NaN 5c598cc9ec4ee5929fd1e356 5/11/2017 \n", | ||
"4 Statuses_Irma_C NaN 5c4099ecec4ee508981c3249 1/22/2018 \n", | ||
"\n", | ||
" emotion_ml opinion_ml text \\\n", | ||
"0 0 1 We will add a few more warmer-than-average day... \n", | ||
"1 0 1 I am happy to speak with someone at @dukeenerg... \n", | ||
"2 0 1 Consider it done! Great work! #9PMRoutine http... \n", | ||
"3 0 1 @WPLGLocal10 Waste of time and taxpayers mon ey \n", | ||
"4 0 1 I feel like Derek Sheppard could’ve removed th... \n", | ||
"\n", | ||
" Relevant Opinion? Emotion? Which emotion? Confusion Sarcasm? Ps/Ng/Nt? \\\n", | ||
"0 0 NaN 0 NaN NaN NaN NaN \n", | ||
"1 1 NaN 1 D NaN NaN Ng \n", | ||
"2 0 1.0 0 NaN NaN NaN Ps \n", | ||
"3 0 1.0 1 A NaN NaN Ng \n", | ||
"4 0 1.0 0 NaN NaN NaN Nt \n", | ||
"\n", | ||
" Unnamed: 14 \n", | ||
"0 NaN \n", | ||
"1 two emotions \n", | ||
"2 NaN \n", | ||
"3 NaN \n", | ||
"4 NaN \n", | ||
" _id \\\n", | ||
"0 5c409973ec4ee50898175e81 \n", | ||
"1 5c11a746ec4ee522100a5b3b \n", | ||
"2 5c0c5cf2ec4ee5221008263d \n", | ||
"3 5c598cc9ec4ee5929fd1e356 \n", | ||
"4 5c4099ecec4ee508981c3249 \n", | ||
"\n", | ||
" text emotion_ml opinion_ml \\\n", | ||
"0 We will add a few more warmer-than-average day... 0 1 \n", | ||
"1 I am happy to speak with someone at @dukeenerg... 0 1 \n", | ||
"2 Consider it done! Great work! #9PMRoutine http... 0 1 \n", | ||
"3 @WPLGLocal10 Waste of time and taxpayers mon ey 0 1 \n", | ||
"4 I feel like Derek Sheppard could’ve removed th... 0 1 \n", | ||
"\n", | ||
" Relevant Opinion? Emotion? Which emotion? Confusion Sarcasm? Ps/Ng/Nt? \n", | ||
"0 0.0 NaN 0 NaN NaN NaN NaN \n", | ||
"1 1.0 NaN 1 D NaN NaN Nt \n", | ||
"2 1.0 1.0 1 HJ NaN NaN Ps \n", | ||
"3 1.0 1.0 1 A NaN NaN Ng \n", | ||
"4 0.0 NaN 0 NaN NaN NaN NaN \n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"print(df_s.head())\n", | ||
"print(df_f.head())" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"699\n", | ||
"699\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"relevant_s = df_s[\"Relevant\"].tolist()\n", | ||
"relevant_f = df_f[\"Relevant\"].tolist()\n", | ||
"print(len(relevant_s))\n", | ||
"print(len(relevant_f))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Relevant Accuracy: 0.8125894134477826\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"same = 0\n", | ||
"text_s = df_s[\"text\"].tolist()\n", | ||
"text_f = df_f[\"text\"].tolist()\n", | ||
"#for i in range(len(text_s)):\n", | ||
"# if(text_s[i] != text_f[i]):\n", | ||
"# print(str(i)+\": \"+text_s[i]+\" | \"+text_f[i]) \n", | ||
"\n", | ||
"for i in range(len(relevant_s)):\n", | ||
" if(relevant_s[i] == relevant_f[i]):\n", | ||
" same = same + 1\n", | ||
"\n", | ||
"print(\"Relevant Accuracy: \"+str(same/len(relevant_s)))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Emotion Accuracy: 0.9577464788732394\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"s = 0\n", | ||
"e_s = df_s[\"Emotion?\"].tolist()\n", | ||
"e_f = df_f[\"Emotion?\"].tolist()\n", | ||
"\n", | ||
"for i in range(len(e_s)):\n", | ||
" if(e_s[i] == e_f[i] and relevant_s[i] == relevant_f[i]):\n", | ||
" s = s + 1\n", | ||
"print(\"Emotion Accuracy: \"+str(s/same))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Specific Emotion Accuracy: 0.05330882352941176\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"sa = 0\n", | ||
"we_s = df_s[\"Which emotion?\"].tolist()\n", | ||
"we_f = df_f[\"Which emotion?\"].tolist()\n", | ||
"\n", | ||
"for i in range(len(we_s)):\n", | ||
" if(e_s[i] == e_f[i] and relevant_s[i] == relevant_f[i] and we_s[i] == we_f[i]):\n", | ||
" sa = sa + 1\n", | ||
"print(\"Specific Emotion Accuracy: \"+str(sa/s))" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.5.2" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Binary file not shown.
Binary file not shown.