Skip to content

Dodant/Knowledge-Distillation

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

75 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Knowledge-Distillation

Is it possible to effectively train student models using logits with intervention? (Tentative Title)

Yechan Kim* and Junggyun Oh* (* denotes equal contribution.)

🚧 Under Construction! (Do not fork this repository yet!)

This repository contains:

  • Python3 / Pytorch code for response-based knowledge distillation

Prerequisites

  • See requirements.txt for details.
torch
torchvision
tqdm            # not mandatory
tensorboard     # not mandatory

How to use

  1. The directory structure of your dataset should be as follows.
|—— 📁 your_own_dataset
	|—— 📁 train
		|—— 📁 class_1
			|—— 🖼️ 1.jpg
			|—— ...
		|—— 📁 class_2 
			|—— 🖼️ ...
	|—— 📁 valid
		|—— 📁 class_1
		|—— 📁 ... 
	|—— 📁 test
		|—— 📁 class_1
		|—— 📁 ... 
  1. Run train.py for training. The below is an example. See src/my_utils/parser.py for details.
python train.py --network_name='efficientnet_b0' --dataset_dir='./cifar10' --epochs=1 --lr=0.1 --auto_mean_std --store --tag='experiment1'

Contribution

If you find any bugs or have opinions for further improvements, feel free to contact us (yechankim@gm.gist.ac.kr or maestr.oh@gm.gist.ac.kr). All contributions are welcome.

Reference

  1. https://github.com/weiaicunzai/pytorch-cifar100
  2. https://github.com/peterliht/knowledge-distillation-pytorch

About

Knowledge Distillation (PyTorch)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%