Is it possible to effectively train student models using logits with intervention? (Tentative Title)
Yechan Kim* and Junggyun Oh* (* denotes equal contribution.)
🚧 Under Construction! (Do not fork this repository yet!)
- Python3 / Pytorch code for response-based knowledge distillation
- See
requirements.txt
for details.
torch
torchvision
tqdm # not mandatory
tensorboard # not mandatory
- The directory structure of your dataset should be as follows.
|—— 📁 your_own_dataset
|—— 📁 train
|—— 📁 class_1
|—— 🖼️ 1.jpg
|—— ...
|—— 📁 class_2
|—— 🖼️ ...
|—— 📁 valid
|—— 📁 class_1
|—— 📁 ...
|—— 📁 test
|—— 📁 class_1
|—— 📁 ...
- Run train.py for training. The below is an example. See src/my_utils/parser.py for details.
python train.py --network_name='efficientnet_b0' --dataset_dir='./cifar10' --epochs=1 --lr=0.1 --auto_mean_std --store --tag='experiment1'
If you find any bugs or have opinions for further improvements, feel free to contact us (yechankim@gm.gist.ac.kr or maestr.oh@gm.gist.ac.kr). All contributions are welcome.