Data::Frame - data frame implementation
version 0.006004
This library is currently experimental.
use Data::Frame;
use PDL;
my $df = Data::Frame->new(
columns => [
z => pdl(1, 2, 3, 4),
y => ( sequence(4) >= 2 ) ,
x => [ qw/foo bar baz quux/ ],
] );
say $df;
# ---------------
# z y x
# ---------------
# 0 1 0 foo
# 1 2 0 bar
# 2 3 1 baz
# 3 4 1 quux
# ---------------
say $df->at(0); # [1 2 3 4]
say $df->at(0)->length; # 4
say $df->at('x'); # [foo bar baz quux]
say $df->{x}; # same as above
say $df->select_columns([qw(x y)]);
# -----------
# x y
# -----------
# 0 foo 0
# 1 bar 0
# 2 baz 1
# 3 quux 1
# -----------
say $df->{[qw(x y)]}; # same as above
say $df->select_rows( 3,1 );
# ---------------
# z y x
# ---------------
# 3 4 1 quux
# 1 2 0 bar
# ---------------
# update data
$df->slice( [0,1], ['z', 'y'] ) .= pdl( 4,3,2,1 );
say $df;
# ---------------
# z y x
# ---------------
# 0 4 2 foo
# 1 3 1 bar
# 2 3 1 baz
# 3 4 1 quux
# ---------------
This implements a data frame container that uses PDL for individual columns.
As such, it supports marking missing values (BAD
values).
Function signatures in docs of this library follow the Function::Parameters conventions, for example,
myfunc(Type1 $positional_parameter, Type2 :$named_parameter)
new( (ArrayRef | HashRef) :$columns,
ArrayRef :$row_names=undef )
Creates a new Data::Frame
when passed the following options as a
specification of the columns to add:
-
columns => ArrayRef $columns_array
When
columns
is passed anArrayRef
of pairs of the form$columns_array = [ column_name_z => $column_01_data, # first column data column_name_y => $column_02_data, # second column data column_name_x => $column_03_data, # third column data ]
then the column data is added to the data frame in the order that the pairs appear in the
ArrayRef
. -
columns => HashRef $columns_hash
$columns_hash = { column_name_z => $column_03_data, # third column data column_name_y => $column_02_data, # second column data column_name_x => $column_01_data, # first column data }
then the column data is added to the data frame by the order of the keys in the
HashRef
(sorted with a stringwisecmp
). -
row_names => ArrayRef $row_names
string() # returns Str
Returns a string representation of the Data::Frame
.
These methods are same,
# returns Int
ncol()
length()
number_of_columns() # returns Int
Returns the count of the number of columns in the Data::Frame
.
These methods are same,
# returns Int
nrow()
number_of_rows() # returns Int
Returns the count of the number of rows in the Data::Frame
.
dims()
Returns the dimensions of the data frame object, in an array of
($nrow, $ncol)
.
shape()
Similar to dims
but returns a piddle.
my $column_piddle = $df->at($column_indexer);
my $cell_value = $df->at($row_indexer, $column_indexer);
If only one argument is given, it would treat the argument as column indexer to get the column. If two arguments are given, it would treat the arguments for row indexer and column indexer respectively to get the cell value.
If a given argument is non-indexer, it would try guessing whether the
argument is numeric or not, and coerce it by either indexer_s()
or
indexer_i()
.
exists($col_name)
Returns true if there exists a column named $col_name
in the data frame
object, false otherwise.
delete($col_name)
In-place delete column given by $col_name
.
rename($hashref_or_coderef)
In-place rename columns.
It can take either,
-
A hashref of key mappings.
If a keys does not exist in the mappings, it would not be renamed.
-
A coderef which transforms each key.
$df->rename( { $from_key => $to_key, ... } );
$df->rename( sub { $_[0] . 'foo' } );
set(Indexer $col_name, ColumnLike $data)
Sets data to column. If $col_name
does not exist, it would add a new column.
isempty()
Returns true if the data frame has no rows.
These methods are same
# returns ArrayRef
names()
names( $new_column_names )
names( @new_column_names )
col_names()
col_names( $new_column_names )
col_names( @new_column_names )
column_names()
column_names( $new_column_names )
column_names( @new_column_names )
Returns an ArrayRef
of the names of the columns.
If passed a list of arguments @new_column_names
, then the columns will be
renamed to the elements of @new_column_names
. The length of the argument
must match the number of columns in the Data::Frame
.
# returns a PDL::SV
row_names()
row_names( Array @new_row_names )
row_names( ArrayRef $new_row_names )
row_names( PDL $new_row_names )
Returns an PDL::SV
of the names of the rows.
If passed a argument, then the rows will be renamed. The length of the argument
must match the number of rows in the Data::Frame
.
column( Str $column_name )
Returns the column with the name $column_name
.
number_of_rows(Int $n) # returns a column
Returns column number $n
. Supports negative indices (e.g., $n = -1 returns
the last column).
add_columns( Array @column_pairlist )
Adds all the columns in @column_pairlist
to the Data::Frame
.
add_column(Str $name, $data)
Adds a single column to the Data::Frame
with the name $name
and data
$data
.
These methods are same,
copy()
clone()
Make a deep copy of this data frame object.
summary($percentiles=[0.25, 0.75])
Generate descriptive statistics that summarize the central tendency,
dispersion and shape of a dataset’s distribution, excluding BAD
values.
Analyzes numeric datetime columns only. For other column types like
PDL::SV
and PDL::Factor
gets only good value count.
Returns a data frame of the summarized statistics.
Parameters:
-
$percentiles
The percentiles to include in the output. All should fall between 0 and 1. The default is
[.25, .75]
, which returns the 25th, 50th, and 75th percentiles (median is always automatically included).
select_columns($indexer)
Returns a new data frame object which has the columns selected by $indexer
.
If a given argument is non-indexer, it would coerce it by indexer_s()
.
select_rows( Indexer $indexer)
# below types would be coerced to Indexer
select_rows( Array @which )
select_rows( ArrayRef $which )
select_rows( Piddle $which )
The argument $indexer
is an "Indexer", as defined in Data::Frame::Types.
select_rows
returns a new Data::Frame
that contains rows that match
the indices specified by $indexer
.
This Data::Frame
supports PDL's data flow, meaning that changes to the
values in the child data frame columns will appear in the parent data frame.
If no indices are given, a Data::Frame
with no rows is returned.
head( Int $n=6 )
If $n ≥ 0, returns a new Data::Frame
with the first $n rows of the
Data::Frame
.
If $n < 0, returns a new Data::Frame
with all but the last -$n rows of the
Data::Frame
.
See also: R's head function.
tail( Int $n=6 )
If $n ≥ 0, returns a new Data::Frame
with the last $n rows of the
Data::Frame
.
If $n < 0, returns a new Data::Frame
with all but the first -$n rows of the
Data::Frame
.
See also: R's tail function.
my $subset1 = $df->slice($row_indexer, $column_indexer);
# Note that below two cases are different.
my $subset2 = $df->slice($column_indexer);
my $subset3 = $df->slice($row_indexer, undef);
Returns a new dataframe object which is a slice of the raw data frame.
This method returns an lvalue which allows PDL-like .=
assignment for
changing a subset of the raw data frame. For example,
$df->slice($row_indexer, $column_indexer) .= $another_df;
$df->slice($row_indexer, $column_indexer) .= $piddle;
If a given argument is non-indexer, it would try guessing if the argument
is numeric or not, and coerce it by either indexer_s()
or indexer_i()
.
sample($n)
Get a random sample of rows from the data frame object, as a new data frame.
my $sample_df = $df->sample(100);
which(:$bad_to_val=undef, :$ignore_both_bad=true)
Returns a pdl of [[col_idx, row_idx], ...]
, like the output of
"whichND" in PDL::Primitive.
These methods are same,
merge($df)
cbind($df)
These methods are same,
append($df)
rbind($df)
transform($func)
Apply a function to columns of the data frame, and returns a new data frame object.
$func
can be one of the following,
-
A function coderef.
It would be applied to all columns.
-
A hashref of
{ $column_name => $coderef, ... }
It allows to apply the function to the specified columns. The raw data frame's columns not existing in the hashref be retained unchanged. Hashref keys not yet existing in the raw data frame can be used for creating new columns.
-
An arrayref like
[ $column_name => $coderef, ... ]
In this mode it's similar as the hasref above, but newly added columns would be in order.
In any of the forms of $func
above, if a new column data is calculated
to be undef
, or in the mappings like hashref or arrayref $coderef
is
an explicit undef
, then the column would be removed from the result
data frame.
Here are some examples,
-
Operate on all data of the data frame,
my $df_new = $df->transform( sub { my ($col, $df) = @_; $col * 2; } );
-
Change some of the existing columns,
my $df_new = $df->transform( { foo => sub { my ($col, $df) = @_; $col * 2; }, bar => sub { my ($col, $df) = @_; $col * 3; } );
-
Add a new column from existing data,
# Equivalent to: # do { my $x = $mtcars->copy; # $x->set('kpg', $mtcars->at('mpg') * 1.609); $x; }; my $mtcars_new = $mtcars->transform( kpg => sub { my ($col, $df) = @_; # $col is undef in this case $df->at('mpg') * 1.609, } );
split(ColumnLike $factor)
Splits the data in into groups defined by $factor
.
In a scalar context it returns a hashref mapping value to data frame.
In a list context it returns an assosiative array, which is ordered by
values in $factor
.
Note that $factor
does not necessarily to be PDL::Factor.
sort($by_columns, $ascending=true)
Sort rows for given columns. Returns a new data frame.
my $df_sorted1 = $df->sort( [qw(a b)], true );
my $df_sorted2 = $df->sort( [qw(a b)], [1, 0] );
my $df_sorted3 = $df->sort( [qw(a b)], pdl([1, 0]) );
Similar as this class's sort()
method but returns a piddle for row indices.
uniq()
Returns a new data frame, which has the unique rows. The row names are from the first occurrance of each unique row in the raw data frame.
id()
Compute a unique numeric id for each unique row in a data frame.
assign( (DataFrame|Piddle) $x )
Assign another data frame or a piddle to this data frame for in-place change.
$x
can be,
- A data frame object having the same dimensions and column names as
$self
. - A piddle having the same number of elements as
$self
.
This method is internally used by the .=
operation, below are same,
$df->assign($x);
$df .= $x;
is_numeric_column($column_name_or_idx)
drop_bad(:$how='any')
Returns a new data frame with rows with BAD values dropped.
See Data::Frame::Partial::Sugar
This feature is somewhat similar to R's tidy evaluation.
See Data::Frame::Partial::Eval.
This is used when stringifying the data frame. Default is '%.8g'
.
This is the relative tolerance used when comparing numerical values of two
data frames.
Default is undef
, which means no tolerance at all. You can set it like,
$Data::Frame::TOLERANCE_REL = 1e-8;
- Zakariyya Mughal zmughal@cpan.org
- Stephan Loyd sloyd@cpan.org
- Andreas Marienborg (omega)
- Mohammad S Anwar manwar@cpan.org
- Patrice Clement (monsieurp)
This software is copyright (c) 2014, 2019-2022 by Zakariyya Mughal, Stephan Loyd.
This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5 programming language system itself.