Skip to content

An app to efficiently perform cortical parcellation and segmentation on raw brain MRI images

License

Notifications You must be signed in to change notification settings

FNNDSC/pl-fastsurfer_inference

Repository files navigation

pl-fastsurfer_inference

https://img.shields.io/docker/v/fnndsc/pl-fastsurfer_inference?sort=semver https://img.shields.io/github/license/fnndsc/pl-fastsurfer_inference

fastsurfer_inference is a ChRIS app that efficiently performs cortical parcellation and anatomical segmentation on raw brain MRI images. In actuality, the ChRIS app is wrapper/vehicle around the FastSurfer engine developed by the Deep Medical Imaging lab. This plugin only wraps around the neural network (responsible for image segmentation). FastSurfer also has a recon-surf surface pipeline.

This plugin is GPU-capable. In anecdotal testing, a full segmentation on the GPU takes in the order of a minute (or less). The same segmentation on CPU can take 90 minutes. Note for CPU running, a machine with high RAM is required. While not fully tested, we recommend at least 24GB RAM for CPU runs (although 16GB RAM might work).

For full information about the underlying method, consult the FastSurfer publication:

Henschel L, Conjeti S, Estrada S, Diers K, Fischl B, Reuter M. "FastSurfer - A fast and accurate deep learning based neuroimaging pipeline." NeuroImage. 2020.

Paper: http://dx.doi.org/10.1016/j.neuroimage.2020.117012 Bib: https://deep-mi.org/static/pub/henschel_2020.bib

The source code of FastSurfer is available on Github: https://github.com/Deep-MI/FastSurfer.

python fastsurfer_inference.py                                      \
                            [--subjectDir <subjectDir>]             \
                            [--subject <subjectToProcess>]          \
                            [--in_name <inputFileToProcess>]        \
                            [--out_name <segmentedFile]             \
                            [--order <interpolation>]               \
                            [--log <logFile>]                       \
                            [--clean]                               \
                            [--no_cuda]                             \
                            [--batch_size <batchSizePerInference]   \
                            [--simple_run]                          \
                            [--run_parallel]                        \
                            [--copyInputFiles <searchKeyword>]      \
                            [-v <level>] [--verbosity <level>]      \
                            [--version]                             \
                            [--man]                                 \
                            [--meta]                                \
                            <inputDir>
                            <outputDir>

fastsurfer_inference.py is a ChRIS-based application that is capable of whole brain segmentation into 95 classes.

Simply pull the docker image,

docker pull fnndsc/pl-fastsurfer_inference

and go straight to the examples section.

[--subjectDir <subjectDir>]
By default, the <subjectDir> is assumed to be the <inputDir>. However,
the <subjectDir> can be nested relative to the <inputDir>, and can thus
be specified with this flag.

The <subjectDir> is assumed by default to contain one level of sub
directory, and these sub dirs, considered the ``subjects``, each contain
a single ``mgz`` to process.

[--subject <subjectToProcess>]
This can denote a sub-set of subject(s) (i.e. sub directory within the
<subjectDir>). The <subjectToProcess> is "globbed", so an expression
like ``--subject 10*`` would process all ``subjects`` starting with the
text string ``10``. Note to protect from shell expansion of wildcard
characters, the argument should be protected in single quotes.

[--in_name <inputFileToProcess>]
The name of the raw ``.mgz`` file of a subject. The default value is
``brain.mgz``. The full path to the <inputFileToProcess> is constructed
by concatenating

        ``<inputDir>/<subjectDir>/<subject>/<inputFileToProcess>``

[--out_name <segmentedFile]
The name of the output or segmented ``mgz`` file. Default name is

                    ``aparc.DKTatlas+aseg.deep.mgz``

[--order <interpolation>]
The order of interpolation:

                    0 = nearest
                    1 = linear (default)
                    2 = quadratic
                    3 = cubic

[--log <logFile>]
The name of the log file containing inference info. Default value is

                    ``deep-seg.log``

[--clean]
If specified, clean the segmentation.

[--no_cuda]
If specified, run on CPU, not GPU. Depending on CPU/GPU, your apparent
mileage will vary, but expect orders longer time than compared to a
GPU.

For example, in informal testing, GPU takes about a minute per
subject, while CPU approximately 1.5 hours per subject!

[--batch_size <batchSizePerInference]
Batch size per inference. Default is 8.

[--simple_run]
Simplified run: only analyse one given image specified by ``--in_name``
(output: ``--out_name``). Note that you need to specify absolute path
to both ``--in_name`` and ``--out_name`` if this option is chosen.

[--run_parallel]
If multiple GPUs are present to the docker container, enable parallel
computation on multiple GPUs with an inference run.

[--copyInputFiles <searchKeyword>]
If specified, copies the input file(s) matching the keyword to output dir. This can be useful
to create an easy association between a given input file(s) and the
segmented output.

[-v <level>] [--verbosity <level>]
Verbosity level for app. Not used currently.

[--version]
If specified, print version number.

[--man]
If specified, print (this) man page.

[--meta]
If specified, print plugin meta data.

The execute vector of this pluing is via docker.

To run using docker, be sure to assign an "input" directory to /incoming and an output directory to /outgoing. Make sure that the $(pwd)/out directory is world writable!

Now, prefix all calls with

docker run --rm -v $(pwd)/out:/outgoing                             \
        fnndsc/pl-fastsurfer_inference                              \
        fastsurfer_inference                                        \

Thus, getting inline help is:

mkdir in out && chmod 777 out
docker run --rm -v $(pwd)/in:/incoming -v $(pwd)/out:/outgoing      \
        fnndsc/pl-fastsurfer_inference                              \
        fastsurfer_inference                                        \
        --man                                                       \
        /incoming /outgoing

Assuming that the <inputDir> layout conforms to

<inputDir>
    │
    └──<subjectDir>
            │
            ├──<subject1>
            │      │
            │      └──█ brain.mgz
            ├──<subject2>
            │      │
            │      └──█ brain.mgz
            ├──<subject3>
            │      │
            │      └──█ brain.mgz
            ╎     ┄
            ╎     ┄
            └──<subjectN>
                   │
                   └──█ brain.mgz

to process this (by default on a GPU) do

docker run   --rm --gpus all                                             \
             -v $(pwd)/in:/incoming -v $(pwd)/out:/outgoing              \
             fnndsc/pl-fastsurfer_inference fastsurfer_inference         \
             /incoming /outgoing

(note the --gpus all is not necessarily required) which will create in the <outputDir>:

<outputDir>
    │
    └──<subjectDir>
            │
            ├──<subject1>
            │      │
            │      └──█ aparc.DKTatlas+aseg.deep.mgz
            ├──<subject2>
            │      │
            │      └──█ aparc.DKTatlas+aseg.deep.mgz
            ├──<subject3>
            │      │
            │      └──█ aparc.DKTatlas+aseg.deep.mgz
            ╎     ┄
            ╎     ┄
            └──<subjectN>
                   │
                   └──█ aparc.DKTatlas+aseg.deep.mgz
https://raw.githubusercontent.com/FNNDSC/cookiecutter-chrisapp/master/doc/assets/badge/light.png

About

An app to efficiently perform cortical parcellation and segmentation on raw brain MRI images

Topics

Resources

License

Stars

Watchers

Forks

Packages

 
 
 

Contributors 3

  •  
  •  
  •