The goal of {hmsidwR}
is to provide the set of data used in the
Health Metrics and the Spread of Infectious Diseases Machine Learning
Applications and Spatial Modelling Analysis book.
Links to the online version of the Book:
It also provides a set of functions to download data such as getunz()
, and
gbd_get_data()
which allows the user to download data for the IHME
SDG-API. With the theme_hmsid()
is possible a customization of the
ggplot2 theme, the string_search()
function scan all folders and files
to find a specific string. And, the kbfit()
function fits a variogram
models and then a set of kriging models to spatial data to select the
best model based on metrics.
install.packages("hmsidwR")
You can install the development version of hmsidwR from GitHub with:
# install.packages("devtools")
devtools::install_github("Fgazzelloni/hmsidwR")
This is a basic example which shows you how to solve a common problem:
library(hmsidwR)
library(dplyr)
data(sdi90_19)
head(subset(sdi90_19, location == "Global"))
#> # A tibble: 6 × 3
#> location year value
#> <chr> <dbl> <dbl>
#> 1 Global 1990 0.511
#> 2 Global 1991 0.516
#> 3 Global 1992 0.521
#> 4 Global 1993 0.525
#> 5 Global 1994 0.529
#> 6 Global 1995 0.534
sdi_avg <- sdi90_19 |>
group_by(location) |>
reframe(sdi_avg = round(mean(value), 3))
head(sdi_avg)
#> # A tibble: 6 × 2
#> location sdi_avg
#> <chr> <dbl>
#> 1 Aceh 0.58
#> 2 Acre 0.465
#> 3 Afghanistan 0.238
#> 4 Aguascalientes 0.606
#> 5 Aichi 0.846
#> 6 Akita 0.792
sdi90_19 |>
filter(location %in% c("Global", "Italy", "France", "Germany")) |>
group_by(location) |>
reframe(sdi_avg = round(mean(value), 3)) |>
head()
#> # A tibble: 4 × 2
#> location sdi_avg
#> <chr> <dbl>
#> 1 France 0.79
#> 2 Germany 0.863
#> 3 Global 0.58
#> 4 Italy 0.763