Skip to content

Commit

Permalink
Update readme regarding artifacts
Browse files Browse the repository at this point in the history
  • Loading branch information
Gabrielcarvfer authored Mar 4, 2025
1 parent 03705e3 commit 2ffe2f8
Show file tree
Hide file tree
Showing 2 changed files with 287 additions and 174 deletions.
287 changes: 113 additions & 174 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,174 +1,113 @@
# The Network Simulator, Version 3


[![codecov](https://codecov.io/gh/nsnam/ns-3-dev-git/branch/master/graph/badge.svg)](https://codecov.io/gh/nsnam/ns-3-dev-git/branch/master/)
[![Gitlab CI](https://gitlab.com/nsnam/ns-3-dev/badges/master/pipeline.svg)](https://gitlab.com/nsnam/ns-3-dev/-/pipelines)
[![Github CI](https://github.com/nsnam/ns-3-dev-git/actions/workflows/per_commit.yml/badge.svg)](https://github.com/nsnam/ns-3-dev-git/actions)


## Table of Contents

1) [An overview](#an-open-source-project)
2) [Building ns-3](#building-ns-3)
3) [Running ns-3](#running-ns-3)
4) [Getting access to the ns-3 documentation](#getting-access-to-the-ns-3-documentation)
5) [Working with the development version of ns-3](#working-with-the-development-version-of-ns-3)

> **NOTE**: Much more substantial information about ns-3 can be found at
<https://www.nsnam.org>
## An Open Source project

ns-3 is a free open source project aiming to build a discrete-event
network simulator targeted for simulation research and education.
This is a collaborative project; we hope that
the missing pieces of the models we have not yet implemented
will be contributed by the community in an open collaboration
process.

The process of contributing to the ns-3 project varies with
the people involved, the amount of time they can invest
and the type of model they want to work on, but the current
process that the project tries to follow is described here:
<https://www.nsnam.org/developers/contributing-code/>

This README excerpts some details from a more extensive
tutorial that is maintained at:
<https://www.nsnam.org/documentation/latest/>

## Building ns-3

The code for the framework and the default models provided
by ns-3 is built as a set of libraries. User simulations
are expected to be written as simple programs that make
use of these ns-3 libraries.

To build the set of default libraries and the example
programs included in this package, you need to use the
tool 'ns3'. Detailed information on how to use ns3 is
included in the file doc/build.txt

However, the real quick and dirty way to get started is to
type the command

```shell
./ns3 configure --enable-examples
```

followed by

```shell
./ns3
```

in the directory which contains this README file. The files
built will be copied in the build/ directory.

The current codebase is expected to build and run on the
set of platforms listed in the [release notes](RELEASE_NOTES.md)
file.

Other platforms may or may not work: we welcome patches to
improve the portability of the code to these other platforms.

## Running ns-3

On recent Linux systems, once you have built ns-3 (with examples
enabled), it should be easy to run the sample programs with the
following command, such as:

```shell
./ns3 run simple-global-routing
```

That program should generate a `simple-global-routing.tr` text
trace file and a set of `simple-global-routing-xx-xx.pcap` binary
pcap trace files, which can be read by `tcpdump -tt -r filename.pcap`
The program source can be found in the examples/routing directory.


## Running ns-3 from python

If you do not plan to modify ns-3 upstream modules, you can get
a pre-built version of the ns-3 python bindings.

```shell
pip install --user ns3
```

If you do not have `pip`, check their documents
on [how to install it](https://pip.pypa.io/en/stable/installation/).

After installing the `ns3` package, you can then create your simulation python script.
Below is a trivial demo script to get you started.

```python
from ns import ns

ns.LogComponentEnable("Simulator", ns.LOG_LEVEL_ALL)

ns.Simulator.Stop(ns.Seconds(10))
ns.Simulator.Run()
ns.Simulator.Destroy()
```

The simulation will take a while to start, while the bindings are loaded.
The script above will print the logging messages for the called commands.

Use `help(ns)` to check the prototypes for all functions defined in the
ns3 namespace. To get more useful results, query specific classes of
interest and their functions e.g. `help(ns.Simulator)`.

Smart pointers `Ptr<>` can be differentiated from objects by checking if
`__deref__` is listed in `dir(variable)`. To dereference the pointer,
use `variable.__deref__()`.

Most ns-3 simulations are written in C++ and the documentation is
oriented towards C++ users. The ns-3 tutorial programs (first.cc,
second.cc, etc.) have Python equivalents, if you are looking for
some initial guidance on how to use the Python API. The Python
API may not be as full-featured as the C++ API, and an API guide
for what C++ APIs are supported or not from Python do not currently exist.
The project is looking for additional Python maintainers to improve
the support for future Python users.

## Getting access to the ns-3 documentation

Once you have verified that your build of ns-3 works by running
the simple-point-to-point example as outlined in 3) above, it is
quite likely that you will want to get started on reading
some ns-3 documentation.

All of that documentation should always be available from
the ns-3 website: <https://www.nsnam.org/documentation/>.

This documentation includes:

- a tutorial
- a reference manual
- models in the ns-3 model library
- a wiki for user-contributed tips: <https://www.nsnam.org/wiki/>
- API documentation generated using doxygen: this is
a reference manual, most likely not very well suited
as introductory text:
<https://www.nsnam.org/doxygen/index.html>

## Working with the development version of ns-3

If you want to download and use the development version of ns-3, you
need to use the tool `git`. A quick and dirty cheat sheet is included
in the manual, but reading through the git
tutorials found in the Internet is usually a good idea if you are not
familiar with it.

If you have successfully installed git, you can get
a copy of the development version with the following command:

```shell
git clone https://gitlab.com/nsnam/ns-3-dev.git
```

However, we recommend to follow the Gitlab guidelines for starters,
that includes creating a Gitlab account, forking the ns-3-dev project
under the new account's name, and then cloning the forked repository.
You can find more information in the [manual](https://www.nsnam.org/docs/manual/html/working-with-git.html).
# ns3-O-RL: Framework de Prototipagem Rápida de xApps com Aprendizagem por Reforço em redes O-RAN

A Inteligência Artificial (IA) é um elemento essencial nos controla-
dores inteligentes O-RAN (RICs), na pilha de redes 6G e futuras. Reduzir a
barreira para a prototipagem de aplicações de Aprendizado por Reforço (RL)
nos stacks 3GPP e O-RAN permitindo inovações no setor. Estes mesmos modelos podem
ser portados posteriormente para um RIC real. Como prova de
conceito, implementamos um xApp de controle de handover no O-RAN, integrando
a ferramenta ns3-ORAN com um modelo de RL baseado em PyTorch,
treinável offline ou online. O framework tem baixa sobrecarga de comunicação
em comparação à ns3-ai e ns3-gym. Também é mais acessível que o desenvolvimento nativo de xApps, com a complicada configuração e operação de testbeds.

# Selos Considerados

Os selos considerados são: Disponíveis e Funcionais.

# Informações básicas

O código-fonte da ferramenta está disponível no repositório https://github.com/Gabrielcarvfer/NS3/tree/NS3.40-ns3-o-rl, juntamente a outros artefatos, como: pesos do modelo treinado, scripts auxiliares para simulações, arquivos Dockerfile e docker-compose para configuração do ambiente de simulação.

O modelo de aprendizagem por reforço, junto a scripts de treinamento com dados sintéticos e plotagem de resultados estão disponíveis no repositório https://github.com/MatheusOCruz/Handover_ORAN.

A documentação da ferramenta se encontra no seguinte link https://gabrielcarvfer.github.io/NS3/ns3_ORAN_RL/.

Foram utilizadas plataformas Ampere ARM com Ubuntu 20.04, 128GB de RAM ECC DDR4 2600MTs, 160 cores. E Intel i7-13900HX, Ubuntu 22.04 e 24.04, 16GB de RAM DDR5 5600MTs. Em ambos os casos, foram utilizados SSDs NVMe.

# Dependências

Foram utilizadas as últimas versões disponíveis de releases estáveis de longo suporte do Ubuntu. Os pacotes geridos pelo sistema necessários são:

- g++
- ninja-build
- python3
- cmake
- libarmadillo-dev
- libmlpack-dev
- pybind11-dev
- python3-dev
- ca-certificates
- python3-pip
- git

Para o modelo de aprendizagem por reforço, são necessários os seguintes pacotes e versões via gerenciador PIP para pacotes Python:

- torch >= 2.6.0
- numpy >= 2.2.2
- matplotlib >= 3.10.0

# Preocupações com segurança

Os artefatos em si não oferecem riscos de segurança aos examinadores, porém as dependências utilizadas podem oferecer algum risco, visto que são controladas por terceiros.

# Instalação

Existem dois meios de se configurar o ambiente necessário. Manualmente, ou através de docker-compose.

Manualmente pode ser instalado e executado com

```
apt-get update && apt-get install -y \
g++ \
ninja-build \
python3 \
cmake \
libarmadillo-dev \
libmlpack-dev \
pybind11-dev \
python3-dev \
ca-certificates \
python3-pip \
git
git clone -b NS3.40-ns3-o-rl https://github.com/Gabrielcarvfer/NS3
cd NS3
git clone -b multiple_ue https://github.com/MatheusOCruz/Handover_ORAN.git
pip install ./Handover_ORAN/HandoverRL
./ns3 configure --enable-examples -d release
./ns3 run "HandoverXappsScenario --scenario=5 --outputFile=0_outputRLRicInitiated.csv --useThreeGppChannel=1
```

Alternativamente, pode ser usado

```
git clone -b NS3.40-ns3-o-rl https://github.com/Gabrielcarvfer/NS3
cd NS3
docker-compose build
docker run “./ns3 run HandoverXappsScenario – --scenario=5 --outputFile=0_outputRLRicInitiated.csv --useThreeGppChannel=1”
```

O processo de baixar e instalar a aplicação deve ser descrito nesta seção. Ao final deste processo já é esperado que a aplicação/benchmark/ferramenta consiga ser executada.

# Teste mínimo

Para verificar que tudo está funcionando como esperado, é possível executar o script ``PlotAllScenarios.sh``. Utilizando a instalação via docker-compose:
```
git clone -b NS3.40-ns3-o-rl https://github.com/Gabrielcarvfer/NS3
cd NS3
docker-compose build
docker run ns3-oran ./PlotAllScenarios.sh”
```

Este script deve gerar 6 figuras (dentro do container), duas para cada padrão de movimento, relativas às vazões dos UEs em cada um dos cenários (assim como medidos em sua camada de rede, e KPMs reportados pelos E2Nodes ao RIC).

- triangle_kpms.png
- triangle_ueThrLog.png
- opp_senoids_kpms.png
- opp_senoids_ueThrLog.png
- offset_senoids_kpms.png
- offset_senoids_ueThrLog.png

# LICENSE

O projeto é distribuído sob a licença GPLv2. Veja o arquivo LICENSE para mais detalhes.

Loading

0 comments on commit 2ffe2f8

Please # to comment.