In this repository you'll find code and executables of C programmed Taylor Series for a lot of mathematical functions and some constants.
$ln(2)$ $\frac{\pi}{4}$ $\frac{\pi^2}{6}$ $\frac{\pi^2}{8}$ $\frac{1}{2}$ $\frac{3}{4}$ $e^x$ $xe^x$ $(x+x^2)e^x$ $ln(1+x), -1 < x \leq 1$ $\frac{1}{2}ln(\frac{1+x}{1-x}), -1 < x < 1$ $ln(x), x > 0$ $ln(x), x \geq \frac{1}{2}$ $(1+x)^\alpha$ $a^x$ $B_k = -\sum_{i=0}^{k-1} \binom{k}{i} \frac{B_i}{k+1-i}$ $E_k = \frac{2^{2k+2}}{\pi^{2k+1}}\left\lbrace1-\frac{1}{3^{2k+1}}+\frac{1}{5^{2k+1}}\right\rbrace$ $E_{2k} = i\sum_{m=1}^{2k+1} \sum_{j=0}^{m} \binom{m}{j} \frac{(-1)^j (m-2j)^{2k+1}}{2^m i^m m}$ $\sin(x)$ $\cos(x)$ $\tan(x)$ $\sec(x)$ $\csc(x)$ $\sinh(x)$ $\cosh(x)$ $\tanh(x)$ $\sinh^{-1}(x)$ $\tanh^{-1}(x)$ $\frac{ln(1+x)}{1+x}$ $e^{\sin(x)}$