Skip to content

IcebergKnight/NMS-Loss

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NMS-Loss

NMS-Loss: Learning with Non-Maximum Suppression for Crowded Pedestrian Detection

Introduction

NMS-Loss test on Citypersons和Caltech:

dataset Config MR
Citypersons cityperons.py 10.08%
Caltech(Ori) caltech.py 5.92%

Installation

Prerequisites:

  • Linux (Windows is not officially supported)
  • Python 3.5+
  • PyTorch 1.1
  • CUDA 9.0 or higher
  • NCCL 2
  • GCC 4.9 or higher
  • mmcv==0.2.16

a. Create a conda virtual environment and activate it.

conda create -n nms-loss python=3.7 -y
conda activate nms-loss

b. Install PyTorch, torchvision and mmcv

conda install pytorch=1.1.0 torchvision
pip install "git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI"
pip install mmcv==0.2.16

c. Clone

git clone http://git.code.oa.com/zekunluo/nms-loss.git
cd nms-loss

d. Check GCC, if GCC < 4.9:

conda install -c psic4 gcc5

e. install

./compile.sh
pip install -v -e .  # or "python setup.py develop"

Test

Dowdload weights from https://drive.google.com/drive/folders/1MwdnknqX6I3lNIbMVJQOyVxGK1lw-dEX?usp=sharing.

Citypersons:

./tools/dist_test.sh configs/cityperons.py work_dirs/citypersons.pth 8 --out results/citypersons.pkl --eval bbox
python3 tools/eval_script/eval_demo.py

Caltech:

./tools/dist_test.sh configs/caltech.py work_dirs/caltech.pth 8 --out results/caltech.pkl --eval bbox
python3 tools/caltech_pkl2txt.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published