Train for OpenMMLab detection models.
We strongly recommend using a virtual environment. If you're not sure where to start, we offer a tutorial here.
pip install ikomia
from ikomia.dataprocess.workflow import Workflow
# Init your workflow
wf = Workflow()
# Add dataset loader
coco = wf.add_task(name="dataset_coco")
coco.set_parameters({
"json_file": "path/to/annotation/file.json",
"image_folder": "path/to/image/folder",
"task": "detection",
})
# Add train algorithm
train = wf.add_task(name="train_mmlab_detection", auto_connect=True)
# Launch your training on your data
wf.run()
Ikomia Studio offers a friendly UI with the same features as the API.
-
If you haven't started using Ikomia Studio yet, download and install it from this page.
-
For additional guidance on getting started with Ikomia Studio, check out this blog post.
- model_weight_file (str): Path to model weights file .pth or URL.
- config_file (str): Path to the .py config file.
- epochs (int) - default '10': Number of complete passes through the training dataset.
- batch_size (int) - default '2': Number of samples processed before the model is updated.
- dataset_split_ratio (int) – default '90' ]0, 100[: Divide the dataset into train and evaluation sets.
- eval_period (int) - default '1': Interval between evalutions.
- output_folder (str, optional): path to where the model will be saved.
Parameters should be in strings format when added to the dictionary.
from ikomia.dataprocess.workflow import Workflow
# Init your workflow
wf = Workflow()
# Add dataset loader
coco = wf.add_task(name="dataset_coco")
coco.set_parameters({
"json_file": "path/to/annotation/file.json",
"image_folder": "path/to/image/folder",
"task": "detection",
})
# Add train algorithm
train = wf.add_task(name="train_mmlab_detection", auto_connect=True)
train.set_parameters({
"epochs": "5",
"batch_size": "2",
"dataset_split_ratio": "90",
"eval_period": "1"
})
# Launch your training on your data
wf.run()