This project shows how to tune different parameters of a RAG application(chunk size, top k etc) and track all the metrics, parameters and artifacts using mlflow. This helps to compare different techniques and iterate quickly over experiments.
python tune_rag.py
You can pass in CLI parameters this way
python tune_rag.py --chunk_size 256 --top_k 5 --model_name 'DifferentModel/zephyr-7b-beta' --embedder_name 'BAAI/bge-large-en-v1.5' --dataset_name 'new_dataset.json'
Access the mlflow dashbaord using
mlflow ui