Skip to content

Commit

Permalink
Update example
Browse files Browse the repository at this point in the history
  • Loading branch information
blegat committed Jan 7, 2018
1 parent 032e49a commit 8151b9e
Showing 1 changed file with 63 additions and 91 deletions.
154 changes: 63 additions & 91 deletions examples/Computing controlled invariant sets.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -19,7 +19,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"metadata": {
"collapsed": true
},
Expand All @@ -39,20 +39,9 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"@_time (macro with 1 method)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"macro _time(x)\n",
" quote\n",
Expand All @@ -66,20 +55,21 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"using Gurobi\n",
"lpsolver = GurobiSolver(OutputFlag=0);"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"iterate! (generic function with 1 method)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"function liftu(S, sys::HybridSystems.DiscreteLinearControlSystem)\n",
" [sys.A sys.B] \\ S\n",
Expand All @@ -95,7 +85,8 @@
" map(t -> new_constraint(hs, S, q, t), out_transitions(hs, q))\n",
"end\n",
"function add_hrep!(S, h::HalfSpace)\n",
" if S ⊆ h # If S ⊆ h, then adding h will not change affect S\n",
" # I was using LP cycling errors when using CDD's LP solver\n",
" if issubset(S, h) # If S ⊆ h, then adding h will not change affect S\n",
" false\n",
" else\n",
" push!(S, SimpleHRepresentation(reshape(h.a, 1, length(h.a)), [h.β]))\n",
Expand All @@ -104,7 +95,7 @@
"end\n",
"function add_constraint!(S, P)\n",
" added = count(map(h -> add_hrep!(S, h), ineqs(P))) + count(map(h -> add_hrep!(S, h), eqs(P)))\n",
" removehredundancy!(S)\n",
" removehredundancy!(S) # CDD throws LP cycling error\n",
" added\n",
"end\n",
"function add_constraints!(S::Polyhedron, Ps::Vector{<:Polyhedron})\n",
Expand All @@ -116,46 +107,18 @@
" @show added\n",
"end\n",
"function iterate!(hs, S, nit)\n",
" map(i -> (@_time set_iteration!(hs, S)), 1:nit)\n",
" map(i -> (gc(); @_time set_iteration!(hs, S)), 1:nit)\n",
"end"
]
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"nineqs(I0[1]) = 8\n",
"m = 1\n",
"added = [6, 8, 8, 8, 8, 8, 8, 8, 8, 8]\n",
"added = [6, 6, 6, 6, 6, 6, 6, 6, 6, 6]\n",
"added = [12, 12, 12, 12, 12, 12, 12, 12, 12, 12]\n",
"added = [14, 14, 14, 14, 14, 14, 14, 14, 14, 14]\n",
"added = [20, 20, 20, 20, 20, 20, 20, 20, 20, 20]\n",
"added = [26, 26, 26, 26, 26, 26, 26, 26, 26, 26]\n",
"added = [30, 30, 30, 30, 30, 30, 30, 30, 30, 30]\n",
"t[m, :] = [0.138743, 0.275568, 0.753732, 1.98394, 5.05119, 12.3602, 27.083]\n"
]
},
{
"data": {
"text/plain": [
"1×7 Array{Float64,2}:\n",
" 0.138743 0.275568 0.753732 1.98394 5.05119 12.3602 27.083"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"Mmax = 1\n",
"nit = 7\n",
"nit = 2\n",
"t = zeros(Mmax, nit)\n",
"Hs = Vector{HybridSystem}(Mmax)\n",
"CIS = Vector{Vector{Polyhedron}}(Mmax)\n",
Expand All @@ -173,41 +136,37 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Mmax = size(t, 1)\n",
"nit = 1\n",
"previt = size(t, 2)\n",
"t = [t zeros(Mmax, nit)]\n",
"totit = size(t, 2)\n",
"for m in 1:Mmax\n",
" t[m, previt+(1:nit)] = iterate!(Hs[m], CIS[m], nit)\n",
" @show t[m, :]\n",
"end\n",
"t"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Plots.PyPlotBackend()"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"import Plots\n",
"Plots.pyplot()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<img src=\"\" />"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"D = [1, 2]\n",
"Plots.plot(project(Hs[1].invariants[1], D))\n",
Expand All @@ -216,13 +175,26 @@
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"Plots.savefig(\"dist_trailerspeed.png\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"t"
]
},
{
"cell_type": "code",
"execution_count": null,
Expand All @@ -243,7 +215,7 @@
"file_extension": ".jl",
"mimetype": "application/julia",
"name": "julia",
"version": "0.6.1"
"version": "0.6.2"
}
},
"nbformat": 4,
Expand Down

0 comments on commit 8151b9e

Please # to comment.