Skip to content

PyTorch implementation of Dhariwal and Nichol (2021) and training it on CIFAR-10

Notifications You must be signed in to change notification settings

KimRass/Classifier-Guidance

Repository files navigation

1. Pre-trained Models

2. Samples

classifier_scale=30.0 classifier_scale=200.0
  • The classes are "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "hose", "ship" and "truck" from top to bottom.

3. Theoretical Background

$$x_{t - 1} \leftarrow \text{sample from } \mathcal{N}(\mu + s\Sigma\nabla_{x_{t}}\log{p_{\phi}}(y \vert x), \Sigma)$$ $$\hat{\epsilon} \leftarrow \epsilon_{\theta}(x_{t}) - \sqrt{1 - \bar{\alpha}{t}}\nabla{x_{t}}\log{p_{\phi}}(y \vert x)$$ $$x_{t - 1} \leftarrow \sqrt{\bar{\alpha}{t - 1}}\Bigg(\frac{x{t} - \sqrt{1 - \bar{\alpha}{t}}\hat{\epsilon}}{\sqrt{\bar{\alpha}{t}}}\Bigg) + \sqrt{1 - \bar{\alpha}_{t - 1}}\hat{\epsilon}$$

4. To Do

  • AdaGN
  • BiGGAN Upsample/Downsample
  • Improved DDPM sampling
  • Conditional/Unconditional models
  • Super-resolution model
  • Interpolation

5. References

About

PyTorch implementation of Dhariwal and Nichol (2021) and training it on CIFAR-10

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published