Skip to content

PyTorch implementation of 'StarGAN' (Yunjey Choi et al., 2018)

Notifications You must be signed in to change notification settings

KimRass/StarGAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

1. Introduction

  • Attribute: A meaningful feature inherent in an image such as hair color, gender or age.
  • Attribute value: A particular value of an attribute, e.g., black/blond/brown for hair color or male/female for gender.
  • Domain: A set of images sharing the same attribute value.
  • Multi-domain image-to-image translation: We change images according to attributes from multiple domains.
  • Training multiple domains from different datasets is possible, such as jointly training CelebA and RaFD images to change a CelebA image’s facial expression using features learned by training on RaFD.
  • 현존 모델들의 문제점:
    • $k$개의 Domain이 있을 때 ${k}P{2}$개의 모델이 필요합니다.
    • 전체 Domain에 대한 공통된 Features가 있다고 하더라고 2개의 Domain으로부터밖에 학습이 불가합니다.
  • 모델은 Domain의 정보를 One-hot encoded label로서 받아들입니다. 학습 중에는 Target domain label을 무작위로 정하고 그 Domain으로 이미지를 번역하도록 모델이 학습됩니다.
  • Adding a mask vector to the domain label:
    • 모르는 Label을 무시하고 특정 데이터셋에 의해 주어지는 Label에만 집중하도록 합니다.

2. Related Work

  • 생략합니다.

3. Star Generative Adversarial Networks

3.1) MultiDomain Image-to-Image Translation

  • $x$: Source domain image.
  • $y$: Target domain image.
  • $c$: Randomly generated target domain label. $$G(x, c) \rightarrow y$$
  • $D_{\text{src}}(x)$: Probability distribution over sources.

About

PyTorch implementation of 'StarGAN' (Yunjey Choi et al., 2018)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages