Version 0.9.0
Release date: 05 Februari, 2025
Model2Vec
You can use Model2Vec for blazingly fast embeddings as follows:
from keybert import KeyBERT
from model2vec import StaticModel
embedding_model = StaticModel.from_pretrained("minishlab/potion-base-8M")
kw_model = KeyBERT(embedding_model)
Light-weight KeyBERT
You can now install a light-weight KeyBERT with:
pip install keybert --no-deps scikit-learn model2vec
Fixes
- Add Model2Vec & light-weight installation in #253
- Add Text Generation Inference with JSON output by @joaomsimoes in #235
- Update pre-commit hooks @afuetterer in #237
- Set up lint job using pre-commit/action @afuetterer in #238
Version 0.8.5
Release date: 14 June, 2024
- Use
batch_size
parameter withkeybert.backend.SentenceTransformerBackend
by @adhadse in #210 - Add system_prompt param to LLMs by @lucafirefox in #214
- Update OpenAI API response by @lucafirefox in #213
- Drop support for python 3.6 and 3.7 by @afuetterer in #230
- Bump github actions versions by @afuetterer in #228
- Switch from setup.py to pyproject.toml by @afuetterer in #231
Version 0.8.4
Release date: 15 Februari, 2024
- Update default Cohere model to
command
by @sam-frampton in #194 - Fix KeyLLM fails when no GPU is available by @igor-pechersky in #201
- Fix
AttributeError: 'tuple' object has no attribute 'page_content'
in LangChain in #199
Version 0.8.3
Release date: 29 November, 2023
- Fix support for openai>=1
You can now use it as follows:
import openai
from keybert.llm import OpenAI
from keybert import KeyLLM
# Create your LLM
client = openai.OpenAI(api_key=MY_API_KEY)
llm = OpenAI(client)
# Load it in KeyLLM
kw_model = KeyLLM(llm)
Version 0.8.2
Release date: 29 September, 2023
- Fixed cuda error when using pre-calculated embeddings with
KeyBERT
+KeyLLM
Version 0.8.1
Release date: 29 September, 2023
- Remove unnecessary print statements