Skip to content
New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

perf: reuse sin / cos calculations in geometry #15

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 11 additions & 7 deletions src/superquadricGeometry.js
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ import { BufferGeometry, Vector3, Float32BufferAttribute } from "three";
// avoid floating point precision errors
const tolerance = 1e-15;

function signed_pow(x, y) {
function signedPow(x, y) {
// round to next integer
if ( Math.abs(Math.round(x) - x) < tolerance ) x = Math.round(x);

Expand Down Expand Up @@ -68,23 +68,27 @@ class SuperquadricGeometry extends BufferGeometry {

const eta = thetaStart + (iy / heightSegments) * thetaLength;

const signedPowSinEta = signedPow(Math.sin(eta), epsilon_1);
const signedPowSinEtaNormal = signedPow(Math.sin(eta), 2 - epsilon_1);

vertex.y = signedPow(Math.cos(eta), epsilon_1);
normal.y = signedPow(Math.cos(eta), 2 - epsilon_1);

for (let ix = 0; ix <= widthSegments; ix++) {

const omega = phiStart + (ix / widthSegments) * phiLength;

// vertex

vertex.x = - signed_pow(Math.sin(eta), epsilon_1) * signed_pow(Math.cos(omega), epsilon_2);
vertex.y = signed_pow(Math.cos(eta), epsilon_1);
vertex.z = signed_pow(Math.sin(eta), epsilon_1) * signed_pow(Math.sin(omega), epsilon_2);
vertex.x = - signedPowSinEta * signedPow(Math.cos(omega), epsilon_2);
vertex.z = signedPowSinEta * signedPow(Math.sin(omega), epsilon_2);

vertices.push(vertex.x, vertex.y, vertex.z);

// normal

normal.x = - signed_pow(Math.sin(eta), 2 - epsilon_1) * signed_pow(Math.cos(omega), 2 - epsilon_2);
normal.y = signed_pow(Math.cos(eta), 2 - epsilon_1);
normal.z = signed_pow(Math.sin(eta), 2 - epsilon_1) * signed_pow(Math.sin(omega), 2 - epsilon_2);
normal.x = - signedPowSinEtaNormal * signedPow(Math.cos(omega), 2 - epsilon_2);
normal.z = signedPowSinEtaNormal * signedPow(Math.sin(omega), 2 - epsilon_2);

normal.normalize();
normals.push(normal.x, normal.y, normal.z);
Expand Down