Skip to content

Commit

Permalink
Merge branch 'NBISweden:master' into master
Browse files Browse the repository at this point in the history
  • Loading branch information
mkierczak authored Oct 16, 2024
2 parents 99fc903 + 3dcfb98 commit 210b1c0
Show file tree
Hide file tree
Showing 12 changed files with 981 additions and 133 deletions.
2 changes: 2 additions & 0 deletions _site.yml
Original file line number Diff line number Diff line change
Expand Up @@ -37,4 +37,6 @@ navbar:
href: home_precourse.html
- text: Info
href: home_info.html
- text: Projects
href: home_projects.html

Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added data/slide_programming/Data_classification.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added data/slide_r_environment/ggplot2_CRAN.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
1 change: 1 addition & 0 deletions home_content.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@ This page contains links to different lectures (slides) and practical exercises
* [Working with Vectors (Lab)](lab_vectors.html)
* [Dataframes (Lab)](lab_dataframes.html)
* [Loops and functions (Slides)](slide_r_elements_4.html)
* [Loops and functions (Lab)](lab_loops.html)

**Data wrangling**

Expand Down
2 changes: 1 addition & 1 deletion home_precourse.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ Extra R packages used in the workshop exercises (if any) are listed below. It is
pkg<-unique(renv::dependencies()$Package)
pkg_discard<-c("mkteachr")
pkg_discard<-c("mkteachr", "manipulateWidget")
pkg_list<-pkg[!pkg %in% pkg_discard]
Expand Down
224 changes: 224 additions & 0 deletions home_projects.Rmd
Original file line number Diff line number Diff line change
@@ -0,0 +1,224 @@
---
title: "Projects"
output:
bookdown::html_document2:
highlight: textmate
toc: false
toc_float:
collapsed: true
smooth_scroll: true
print: false
toc_depth: 4
number_sections: false
df_print: default
code_folding: none
self_contained: false
keep_md: false
encoding: 'UTF-8'
css: "assets/lab.css"
include:
after_body: assets/footer-lab.html
---

```{r,child="assets/header-lab.Rmd"}
```

Hands-on analysis of actual data is the best way to learn R programming. This page contains some data sets that you can use to explore what you have learned in this course. For each data set, a brief description as well as download instructions are provided.

<div class="alert alert-info">
<strong> Try to focus on using the tools from the course to explore the data, rather than worrying about producing a perfect report with a coherent analysis workflow.</strong>
</div>


On the last day you will present your Rmd file (or rather, the resulting html report) and share with the class what your data was about.

---

## Palmer penguins 🐧

- This is a data set containing a series of measurements for three species of penguins collected in the Palmer station in Antarctica.
- Data description: <https://vincentarelbundock.github.io/Rdatasets/doc/heplots/peng.html>

<details>
<summary>Download instructions</summary>
```{r, warning=F, message=F}
penguins <- read.table("https://vincentarelbundock.github.io/Rdatasets/csv/heplots/peng.csv", header = T, sep = ",")
str(penguins)
```
</details>

---

## Drinking habits 🍷

- Data from a national survey on the drinking habits of american citizens in 2001 and 2002.
- Data description: <https://vincentarelbundock.github.io/Rdatasets/doc/stevedata/nesarc_drinkspd.html>

<details>
<summary>Download instructions</summary>
```{r}
library(dplyr)
# this will download the csv file directly from the web
drinks <- read.table("https://vincentarelbundock.github.io/Rdatasets/csv/stevedata/nesarc_drinkspd.csv", header = T, sep = ",")
# the lines below will take a sample from the full data set
set.seed(seed = 2)
drinks <- sample_n(drinks, size = 3000, replace = F)
# and here we check the structure of the data
str(drinks)
```
</details>

---

## Car crashes 🚗

- Data from car accidents in the US between 1997-2002.
- Data description: <https://vincentarelbundock.github.io/Rdatasets/doc/DAAG/nassCDS.html>

<details>
<summary>Download instructions</summary>
```{r}
library(dplyr)
# this will download the csv file directly from the web
crashes <- read.table("https://vincentarelbundock.github.io/Rdatasets/csv/DAAG/nassCDS.csv", header = T, sep = ",")
# the lines below will take a sample from the full data set
set.seed(seed = 2)
crashes <- sample_n(crashes, size = 3000, replace = F)
# and here we check the structure of the data
str(crashes)
```
</details>

---

## Gapminder health and wealth 📈

- This is a collection of country indicators from the Gapminder dataset for the years 2000-2016.
- Data description: <https://vincentarelbundock.github.io/Rdatasets/doc/dslabs/gapminder.html>

<details>
<summary>Download instructions</summary>
```{r}
library(dplyr)
# this will download the csv file directly from the web
gapminder <- read.table("https://vincentarelbundock.github.io/Rdatasets/csv/dslabs/gapminder.csv", header = T, sep = ",")
# here we filter the data to remove anything before the year 2000
gapminder <- gapminder |> filter(year >= 2000)
# and here we check the structure of the data
str(gapminder)
```
</details>

---

## StackOverflow survey 🖥️

- This is a downsampled and modified version of one of StackOverflow's annual surveys where users respond to a series of questions related to careers in technology and coding.
- Data description: <https://vincentarelbundock.github.io/Rdatasets/doc/modeldata/stackoverflow.html>

<details>
<summary>Download instructions</summary>
```{r}
library(dplyr)
# this will download the csv file directly from the web
stackoverflow <- read.table("https://vincentarelbundock.github.io/Rdatasets/csv/modeldata/stackoverflow.csv", header = T, sep = ",")
# the lines below will take a sample from the full data set
set.seed(2)
stackoverflow <- sample_n(stackoverflow, size = 3000)
# and here we check the structure of the data
str(stackoverflow)
```
</details>

---

## Doctor visits 🤒

- Data on the frequency of doctor visits in the past two weeks in Australia for the years 1977 and 1978.
- Data description: <https://vincentarelbundock.github.io/Rdatasets/doc/AER/DoctorVisits.html>

<details>
<summary>Download instructions</summary>
```{r}
library(dplyr)
# this will download the csv file directly from the web
doctor <- read.table("https://vincentarelbundock.github.io/Rdatasets/csv/AER/DoctorVisits.csv", header = T, sep = ",")
# the lines below will take a sample from the full data set
set.seed(2)
doctor <- sample_n(doctor, size = 3000)
# and here we check the structure of the data
str(doctor)
```
</details>

---

## Video Game Sales 🎮

- This data set contains sales figures for video games titles released in 2001 and 2002.
- Data description: <https://mavenanalytics.io/data-playground?order=date_added%2Cdesc&search=Video%20Game%20Sales>
- Click on "Preview Data" and "VG Data Dictionary" to see the description for each column.

<details>
<summary>Download instructions</summary>
```{r, warning=F, message=F}
library(dplyr)
library(lubridate)
# this will download the file to your working directory
download.file(url = "https://maven-datasets.s3.amazonaws.com/Video+Game+Sales/Video+Game+Sales.zip", destfile = "video_game_sales.zip")
# this will unzip the file and read it into R
videogames <- read.table(unz(filename = "vgchartz-2024.csv", "video_game_sales.zip"), header = T, sep = ",", quote = "\"", fill = T)
# this will select rows corresponding to years 2001 and 2002
videogames <- filter(videogames, year(as_date(release_date)) %in% c(2001,2002))
# and here we check the structure of the data
str(videogames)
```
</details>

---

## LEGO Sets 🏗️

- This data set contains the description of all LEGO sets released from 2000 to 2009.
- Data description: <https://mavenanalytics.io/data-playground?order=date_added%2Cdesc&search=lego>
- Click on "Preview Data" and "VG Data Dictionary" to see the description for each column.

<details>
<summary>Download instructions</summary>
```{r, warning=F, message=F}
library(dplyr)
# this will download the file to your working directory
download.file(url = "https://maven-datasets.s3.amazonaws.com/LEGO+Sets/LEGO+Sets.zip", destfile = "lego.csv.zip")
# this will unzip the file and read it into R
lego <- read.table(unz(filename = "lego_sets.csv", "lego.csv.zip"), header = T, sep = ",", quote = "\"", fill = T)
# this will select rows corresponding to years 2000-2009
lego <- filter(lego, year %in% seq(2000,2009,1))
# and here we check the structure of the data
str(lego)
```
</details>

---

## Shark attacks 🦈

- This data set contains information on shark attack records from all over the world.
- Data description: <https://mavenanalytics.io/data-playground?order=date_added%2Cdesc&search=shark>
- Click on "Preview Data" and "VG Data Dictionary" to see the description for each column.

<details>
<summary>Download instructions</summary>
```{r, warning=F, message=F}
library(dplyr)
# this will download the file to your working directory
download.file(url = "https://maven-datasets.s3.amazonaws.com/Shark+Attacks/attacks.csv.zip", destfile = "attacks.csv.zip")
# this will unzip the file and read it into R
sharks <- read.table(unz(filename = "attacks.csv", "attacks.csv.zip"), header = T, sep = ",", quote = "\"", fill = T)
# the lines below will take a sample from the full data set
set.seed(seed = 2)
sharks <- sample_n(sharks, size = 3000, replace = F)
str(sharks)
```
</details>

***
54 changes: 31 additions & 23 deletions schedule.csv
Original file line number Diff line number Diff line change
@@ -1,29 +1,37 @@
date;room;start_time;end_time;topic;teacher;assistant;link_slide;link_lab;link_room
23/10/2023;Tripplet room;09:00;09:15;Welcome;Nima;NR, PA;;;
;;09:15;09:30;Intro to R;Nima;NR, PA;slide_r_intro.html;;
;;09:30;10:00;Intro to R programming;Nima;NR, PA;slide_r_programming_1.html;;
;;10:15;10:45;Intro to R environment;Nima;NR, PA;slide_r_environment.html;;
;;11:00;12:00;Using Rstudio;Nima;NR, PA;;https://www.dropbox.com/s/3sy4ou2o8jh5syf/RCourseVideo.mov?dl=0;
28/10/2024;Experimental room;09:00;09:15;Welcome;Nima;;;;
;;09:15;10:00;Introduction;Nima;;slide_r_intro.html;;
;;10:00;11:00;Using Rstudio;Nima;;;https://youtu.be/suX6nsSUXDw?si=Vs1e22GU6UJ4Ty7u;
;;11:00;12:00;Essential: Variable & operators;Nima;;slide_r_elements_1.html;;
;;12:00;13:00;Lunch;;;;;
;;13:00;15:00;Variables & Operators;Nima;NR, PA, GD;slide_r_elements_1.html;;
;;15:00;17:00;Data types;Nima;NR, PA, GD;;lab_datatypes.html;
24/10/2023;Tripplet room;09:00;10:00;Vectors & Strings;Sebastian DiLorenzo;NR, PA, SD, GD;slide_r_elements_2.html;;
;;10:00;11:00;Matrices, Lists and Dataframes;Prasoon;NR, PA, SD, GD;slide_r_elements_3.html;;
;;11:00;12:00;Working with Vectors;Sebastian DiLorenzo;NR, PA, SD, GD;;lab_vectors.html;
;;13:00;13:15;Projects and group discussion;Guilherme;;;;
;;13:15;14:00;Essential: data types;Guilherme;;;lab_datatypes.html;
;;14:00;15:00;Essential: Vectors & Strings;Guilherme;;slide_r_elements_2.html;;
;;15:00;16:00;Essential: Working with Vectors;Guilherme;;;lab_vectors.html;
;;16:00;17:00;Group discussion on projects;;;;;
29/10/2024;Experimental room;09:00;10:00;Essential: Matrices, Lists and Dataframes;Guilherme;;slide_r_elements_3.html;;
;;10:00;11:00;Essential: Matrices, Lists and Dataframes;Guilherme;;;lab_dataframes.html;
;;11:00;12:00;Loading data into R;Guilherme;;slide_loading_data.html;;
;;12:00;13:00;Lunch;;;;;
;;13:00;17:00;Working with Matrices, Lists and Dataframes;Prasoon;NR, PA, SD;;lab_dataframes.html;
25/10/2023;Tripplet room;09:00;10:00;Loading data into R;Sebastian DiLorenzo;NR, PA, GD, SD;slide_loading_data.html;;
;;10:00;12:00;Loading data into R;Sebastian DiLorenzo;NR, PA, GD, SD;;lab_loadingdata.html;
;;13:00;15:00;Loading data into R;Guilherme;;;lab_loadingdata.html;
;;15:00;15:30;Essential: Basic statistics;Nima;;slide_r_basic_statistic.html;;
;;15:30;16:00;Essential: Basic statistics;Nima;;;;
;;16:00;17:00;Group discussion on projects;;;;;
30/10/2024;Experimental room;09:00;10:00;Essential: Loops, Conditionals, Functions;Miguel;;slide_r_elements_4.html;;
;;10:00;12:00;Essential: Loops, Conditionals, Functions;Miguel;;;lab_loops.html;
;;12:00;13:00;Lunch;;;;;
;;13:00;14:00;Control Structures, Iteration;Nima;NR, PA, GD;slide_r_elements_4.html;;
;;14:00;17:00;Loops, Conditionals, Functions;Nima;NR, PA, GD;;lab_loops.html;
26/10/2023;Tripplet room;09:00;10:00;Base graphics;Prasoon;PA, NR, GD;slide_base_graphics.html;;
;;10:00;12:00;Base graphics;Prasoon;PA, NR, GD;;lab_graphics.html;
;;13:00;14:00;Intro to Tidyverse;Marcin;;slide_tidyverse.html;;
;;14:00;16:00;Intro to Tidyverse;Marcin;;;lab_tidyverse.html;
;;16:00;17:00;Group discussion on projects;;;;;
31/10/2024;Experimental room;09:00;10:00;Base graphics;Nima;;slide_base_graphics.html;;
;;10:00;12:00;Base graphics;Nima;;;lab_graphics.html;
;;12:00;13:00;Lunch;;;;;
;;13:00;14:00;Intro to Tidyverse;Marcin Kierczak;MK, PA, GD, NR;slide_tidyverse.html;;
;;14:00;17:00;Intro to Tidyverse;Marcin Kierczak;MK, PA, GD, NR;;lab_tidyverse.html;
27/10/2023;Tripplet room;09:00;10:00;Graphics using ggplot2;Prasoon;PA, NR;slide_ggplot2.html;;
;;10:00;11:00;Topic of your interest;Nima/Prasoon;NR, PA;;;
;;11:00;12:00;Q&A;Nima/Prasoon;NR, PA, MR;;;
;;13:00;14:00;Graphics using ggplot2;Lokesh;;slide_ggplot2.html;;
;;14:00;16:00;Working with ggplot2;Lokesh;;;lab_ggplot2.html;
;;16:00;17:00;Group discussion on projects;;;;;
1/11/2024;Experimental room;09:00;10:00;Group discussion on projects;;;;;
;;10:00;12:00;Group discussion on projects;;;;;
;;11:00;12:00;Group discussion on projects;;;;;
;;12:00;13:00;Lunch;;;;;
;;13:00;16:00;Working with ggplot2;Prasoon;PA, NR, MR;;lab_ggplot2.html;
;;13:00;14:30;Group presentation;;;;;
;;14:30;15:00;Q & A;;;;;
Loading

0 comments on commit 210b1c0

Please # to comment.