Skip to content

Commit

Permalink
added options to specify minimum and zero-replacement values in QDM d…
Browse files Browse the repository at this point in the history
…elta denominator
  • Loading branch information
grantbuster committed Aug 27, 2024
1 parent 1f4b2dc commit bd77b63
Showing 1 changed file with 38 additions and 5 deletions.
43 changes: 38 additions & 5 deletions rex/utilities/bc_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,8 @@ class QuantileDeltaMapping:
"""

def __init__(self, params_oh, params_mh, params_mf, dist='empirical',
relative=True, sampling='linear', log_base=10):
relative=True, sampling='linear', log_base=10,
delta_denom_min=None, delta_denom_zero=None):
"""
Parameters
----------
Expand Down Expand Up @@ -132,6 +133,18 @@ def __init__(self, params_oh, params_mh, params_mf, dist='empirical',
will concentrate more samples at the extreme sides of the
distribution. Can also be a 1D array of dist inputs if being used
from reV, but they must all be the same option.
delta_denom_min : float | None
Option to specify a minimum value for the denominator term in the
calculation of a relative delta value. This prevents division by a
very small number making delta blow up and resulting in very large
output bias corrected values. See equation 4 of Cannon et al., 2015
for the delta term.
delta_denom_zero : float | None
Option to specify a value to replace zeros in the denominator term
in the calculation of a relative delta value. This prevents
division by a very small number making delta blow up and resulting
in very large output bias corrected values. See equation 4 of
Cannon et al., 2015 for the delta term.
"""

self.params_oh = params_oh
Expand All @@ -142,6 +155,8 @@ def __init__(self, params_oh, params_mh, params_mf, dist='empirical',
self.sampling = str(self._clean_kwarg(sampling)).casefold()
self.log_base = float(self._clean_kwarg(log_base))
self.scipy_dist = None
self.delta_denom_min = delta_denom_min
self.delta_denom_zero = delta_denom_zero

if self.dist_name != 'empirical':
self.scipy_dist = getattr(scipy.stats, self.dist_name, None)
Expand Down Expand Up @@ -265,7 +280,8 @@ def ppf(cls, p, params, scipy_dist, sampling, log_base):

@classmethod
def run_qdm(cls, arr, params_oh, params_mh, params_mf,
scipy_dist, relative, sampling, log_base):
scipy_dist, relative, sampling, log_base, delta_denom_min,
delta_denom_zero):
"""Run the actual QDM operation from args without initializing the
``QuantileDeltaMapping`` object
Expand Down Expand Up @@ -314,6 +330,18 @@ def run_qdm(cls, arr, params_oh, params_mh, params_mf,
will concentrate more samples at the extreme sides of the
distribution. Can also be a 1D array of dist inputs if being used
from reV, but they must all be the same option.
delta_denom_min : float | None
Option to specify a minimum value for the denominator term in the
calculation of a relative delta value. This prevents division by a
very small number making delta blow up and resulting in very large
output bias corrected values. See equation 4 of Cannon et al., 2015
for the delta term.
delta_denom_zero : float | None
Option to specify a value to replace zeros in the denominator term
in the calculation of a relative delta value. This prevents
division by a very small number making delta blow up and resulting
in very large output bias corrected values. See equation 4 of
Cannon et al., 2015 for the delta term.
Returns
-------
Expand Down Expand Up @@ -346,7 +374,10 @@ def run_qdm(cls, arr, params_oh, params_mh, params_mf,
logger.debug('Finished computing distributions.')

if relative:
x_mh_mf[x_mh_mf == 0] = 0.001 # arbitrary limit to prevent div 0
if delta_denom_zero is not None:
x_mh_mf[x_mh_mf == 0] = delta_denom_zero
elif delta_denom_min is not None:
x_mh_mf = np.maximum(x_mh_mf, delta_denom_min)
delta = arr / x_mh_mf # Eq.4: x_m_p / F-1_m_h(Tau_m_p)
arr_bc = x_oh * delta # Eq.6: x^_m_p = x^_o:m_h:p * delta
else:
Expand Down Expand Up @@ -378,7 +409,8 @@ def __call__(self, arr, max_workers=1):
if max_workers == 1:
arr_bc = self.run_qdm(arr, self.params_oh, self.params_mh,
self.params_mf, self.scipy_dist,
self.relative, self.sampling, self.log_base)
self.relative, self.sampling, self.log_base,
self.delta_denom_min, self.delta_denom_zero)
else:
max_workers = max_workers or os.cpu_count()
sslices = np.array_split(np.arange(arr.shape[1]), arr.shape[1])
Expand All @@ -393,7 +425,8 @@ def __call__(self, arr, max_workers=1):
self.params_mh[idx],
self.params_mf[idx], self.scipy_dist,
self.relative, self.sampling,
self.log_base)
self.log_base, self.delta_denom_min,
self.delta_denom_zero)
futures[fut] = idx
for future in as_completed(futures):
idx = futures[future]
Expand Down

0 comments on commit bd77b63

Please # to comment.