Skip to content

Host repository for the "Reproducible Deep Learning" PhD course

License

Notifications You must be signed in to change notification settings

OfficiallyDAC/reprodl2021

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Reproducible Deep Learning

PhD Course in Data Science, 2021, 3 CFU

[Official website]

This practical PhD course explores the design of a simple reproducible environment for a deep learning project, using free, open-source tools (Git, DVC, Docker, Hydra, ...). The choice of tools is opinionated, and was made as a trade-off between practicality and didactical concerns.

Local set-up

The use case of the course is an audio classification model trained on the ESC-50 dataset. To set-up your local machine (or a proper virtual / remote environment), configure Anaconda, and create a clean environment:

conda create -n reprodl; conda activate reprodl

Then, install a few generic prerequisites (notebook handling, Pandas, …):

conda install -y -c conda-forge notebook matplotlib pandas ipywidgets pathlib

Finally, install PyTorch and PyTorch Lightning. The instructions below can vary depending on whether you have a CUDA-enabled machine, Linux, etc. In general, follow the instructions from the websites.

conda install -y pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch -c conda-forge
conda install -y pytorch-lightning -c conda-forge

This should be enough to let you run the initial notebook. More information on the use case can be found inside the notebook itself.

⚠️ For Windows only, install a backend for torchaudio:

pip install soundfile

Additional set-up steps

The following steps are not mandatory, but will considerably simplify the experience.

  1. If you are on Windows, install the Windows Subsystem for Linux. This is useful in a number of contexts, including Docker installation.
  2. We will use Git from the command line multiple times, so consider enabling GitHub access with an SSH key.
  3. We will experiment with Docker reproducibility on the Sapienza DGX environment. If you have not done so already, set-up your access to the machine.

Organization of the course

The course is split into exercises (e.g., adding DVC support). The material for each exercise is provided as a Git branch. To follow an exercise, switch to the corresponding branch, and follow the README there. If you want to see the completed exercise, add _completed to the name of the branch. Additional material and information can be found on the main website of the course.

List of exercises:

  • Experimenting with Git, branches, and scripting (exercise1_git).
  • Adding Hydra configuration (exercise2_hydra).
  • Versioning data with DVC (exercise3_dvc).
  • Creating a Dockerfile (exercise4_docker).
  • Experiment management with Weight & Biases (exercise5_wandb).
  • Unit testing and formatting with continuous integration (exercise6_hooks).

An example

If you want to follow the first exercise, switch to the corresponding branch and follow the instructions from there:

git checkout exercise1_git

If you want to see the completed exercise:

git checkout exercise1_git_completed

You can inspect the commits to look at specific changes in the code:

git log --graph --abbrev-commit --decorate

If you want to inspect a specific change, you can checkout again using the ID of the commit.

Advanced reading material

If you liked the exercises and are planning to explore more, the new edition of Full Stack Deep Learning (UC Berkeley CS194-080) covers a larger set of material than this course. Another good resource (divided in small exercises) is the MLOps repository by Goku Mohandas. lucmos/nn-template is a fully-functioning template implementing many of the tools described in this course.

About

Host repository for the "Reproducible Deep Learning" PhD course

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%