Skip to content

UNMAINTAINED | R-package providing access to fundamental data and valuation metrics for thousands of publicly traded companies worldwide.

License

Notifications You must be signed in to change notification settings

OliverHennhoefer/quant

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Fetching Stock Data for Fundamental Analysis

The project relies on data provided by gurufocus.com and tipranks.com

This webscraping toolset provides functionalities for easily gathering stock data for up to the last five fiscal years.

📚 Extensive data for 6.000+ unique listings.
📝 More than 50 different metrics.
📅 Data for the company's last five fiscal years and current years TTM value.
♻️ Convenient merging-abilities for updating past scraping results.

Demo

Prerequisite

Note that the installation of 'quant' requires RTools in order to build R and R packages from source on Windows.

Installation

# Github Download 'quant'-package (dev version)
devtools::install_github('OliverHennhoefer/quant')

Application

df <- data.frame("symbol" = c("AAPL", "MSFT", "BABA"))

# Diluted Earnings per Share
df %>%
  get_diluted_eps() 
  
>   Symbol EPS_2017 EPS_2018  EPS_2019  EPS_2020  EPS_2021  EPS_TTM
  1 AAPL   2.30    2.98       2.97      3.28      5.61      6.04
  2 BABA   2.46    3.88       4.97      7.97      8.40      3.74
  3 MSFT   3.25    2.13       5.06      5.76      8.05      9.39

Easily fetch several data for the most common financial measures or even more uncustomary ratios:

df <- data.frame("symbol" = c("AAPL", "MSFT", "BABA"))

# Profitability Rank, Probability of Financial Distress 
df %>%
  get_profitability() %>%
  get_financial_distress()
  
>   Symbol Fin.Distress  Profitability  
  1 AAPL   0.02          10
  2 BABA   0.29          9                                 
  3 MSFT   0.03          10

Data Providers

gurufocus.com
tipranks.com
wikipedia.com