TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials
1. Installation
2. Usage
3. Polynomials
4. Base Class(Poly)
-
the stable version:
pip3 install orthnet
-
the dev version:
git clone https://github.com/orcuslc/orthnet.git && cd orthnet
python3 setup.py build_ext --inplace && python3 setup.py install
import tensorflow as tf
import numpy as np
from orthnet import Legendre
x_data = np.random.random((10, 2))
x = tf.placeholder(dtype = tf.float32, shape = [None, 2])
L = Legendre(x, 5)
with tf.Session() as sess:
print(L.tensor, feed_dict = {x: x_data})
import torch
import numpy as np
from orthnet import Legendre
x = torch.DoubleTensor(np.random.random((10, 2)))
L = Legendre(x, 5)
print(L.tensor)
import numpy as np
from orthnet import Legendre
x = np.random.random((10, 2))
L = Legendre(x, 5)
print(L.tensor)
In some scenarios, users can specify the exact backend compatible with the input x
. The backends provided are:
An example to specify the backend is as follows.
import numpy as np
from orthnet import Legendre, NumpyBackend
x = np.random.random((10, 2))
L = Legendre(x, 5, backend = NumpyBackend())
print(L.tensor)
In some scenarios, users may provide pre-computed tensor product combinations to save computing time. An example of providing combinations is as follows.
import numpy as np
from orthnet import Legendre, enum_dim
dim = 2
degree = 5
x = np.random.random((10, dim))
L = Legendre(x, degree, combinations = enum_dim(degree, dim))
print(L.tensor)
Class Poly(x, degree, combination = None)
:
- Inputs:
x
a tensordegree
highest degree for target polynomialscombination
optional, tensor product combinations
- Attributes:
Poly.tensor
the tensor of function values (with degree from 0 toPoly.degree
(included))Poly.length
the number of function basis (columns) inPoly.tensor
Poly.index
the index of the first combination of each degree inPoly.combinations
Poly.combinations
all combinations of tensor productPoly.tensor_of_degree(degree)
return all polynomials of given degreesPoly.eval(coefficients)
return the function values with given coefficientsPoly.quadrature(function, weight)
return Gauss quadrature with given function and weight