Skip to content

In the requirements.txt, tensorboard is not present

Notifications You must be signed in to change notification settings

PalgunaGopireddy/AConvNet-pytorch

 
 

Repository files navigation

AConvNet

Target Classification Using the Deep Convolutional Networks for SAR Images

This repository is reproduced-implementation of AConvNet which recognize target from MSTAR dataset. You can see the official implementation of the author at MSTAR-AConvNet.

Dataset

MSTAR (Moving and Stationary Target Acquisition and Recognition) Database

Format

  • Header
    • Type: ASCII
    • Including data shape(width, height), serial number, azimuth angle, etc.
  • Data
    • Type: Two-bytes
    • Shape: W x H x 2
      • Magnitude block
      • Phase Block

Below figure is the example of magnitude block(Left) and phase block(Right)

Example of data block: 2S1

Model

The proposed model only consists of sparsely connected layers without any fully connected layers.

  • It eases the over-fitting problem by reducing the number of free parameters(model capacity)
layer Input Conv 1 Conv 2 Conv 3 Conv 4 Conv 5
channels 2 16 32 64 128 10
weight size - 5 x 5 5 x 5 6 x 6 5 x 5 3 x 3
pooling - 2 x 2 - s2 2 x 2 - s2 2 x 2 - s2 - -
dropout - - - - 0.5 -
activation linear ReLU ReLU ReLU ReLU Softmax

Training

For training, this implementation fixes the random seed to 12321 for reproducibility.

The experimental conditions are same as in the paper, except for data augmentation. You can see the details in src/model/_base.py and experiments/config/AConvNet-SOC.json

Data Augmentation

  • The author uses random shifting to extract 88 x 88 patches from 128 x 128 SAR image chips.

    • The number of training images per one SAR image chip could be increased at maximum by (128 - 88 + 1) x (128 - 88 + 1) = 1681.
  • However, for SOC, this repository does not use random shifting tue to accuracy issue.

    • You can see the details in src/data/generate_dataset.py and src/data/mstar.py
    • The implementation details for data augmentation is as:
      • Crop the center of 94 x 94 size image on 100 x 100 SAR image chip (49 patches per image chip).
      • Extract 88 x 88 patches with stride 1 from 94 x 94 image with random cropping.

Experiments

You can download the MSTAR Dataset from MSTAR Overview

  • MSTAR Clutter - CD1 / CD2
  • MSTAR Target Chips (T72 BMP2 BTR70 SLICY) - CD1
  • MSTAR / IU Mixed Targets - CD1 / CD2
  • MSTAR / IU T-72 Variants - CD1 / CD2
  • MSTAR Predictlite Software - CD1

You can download the experimental results of this repository from experiments

Standard Operating Condition (SOC)

Train Test
Class Serial No. Depression No. Images Depression No. Images
BMP-2 9563 17 233 15 196
BTR-70 c71 17 233 15 196
T-72 132 17 232 15 196
BTR-60 k10yt7532 17 256 15 195
2S1 b01 17 299 15 274
BRDM-2 E-71 17 298 15 274
D7 92v13015 17 299 15 274
T-62 A51 17 299 15 273
ZIL-131 E12 17 299 15 274
ZSU-234 d08 17 299 15 274
Training Set (Depression: 17$\degree$)
MSTAR-PublicTargetChips-T72-BMP2-BTR70-SLICY/MSTAR_PUBLIC_TARGETS_CHIPS_T72_BMP2_BTR70_SLICY
├ TARGETS/TRAIN/17_DEG
│    ├ BMP2/SN_9563/*.000 (233 images)
│    ├ BTR70/SN_C71/*.004 (233 images)
│    └ T72/SN_132/*.015   (232 images)
└ ...

MSTAR-PublicMixedTargets-CD2/MSTAR_PUBLIC_MIXED_TARGETS_CD2
├ 17_DEG
│    ├ COL1/SCENE1/BTR_60/*.003  (256 images)
│    └ COL2/SCENE1
│        ├ 2S1/*.000            (299 images)
│        ├ BRDM_2/*.001         (298 images)
│        ├ D7/*.005             (299 images)
│        ├ SLICY
│        ├ T62/*.016            (299 images)
│        ├ ZIL131/*.025         (299 images)
│        └ ZSU_23_4/*.026       (299 images)
└ ...
Test Set (Depression: 15$\degree$)
MSTAR-PublicTargetChips-T72-BMP2-BTR70-SLICY/MSTAR_PUBLIC_TARGETS_CHIPS_T72_BMP2_BTR70_SLICY
├ TARGETS/TEST/15_DEG
│    ├ BMP2/SN_9563/*.000 (195 images)
│    ├ BTR70/SN_C71/*.004 (196 images)
│    └ T72/SN_132/*.015   (196 images)
└ ...

MSTAR-PublicMixedTargets-CD1/MSTAR_PUBLIC_MIXED_TARGETS_CD1
├ 15_DEG
│    ├ COL1/SCENE1/BTR_60/*.003  (195 images)
│    └ COL2/SCENE1
│        ├ 2S1/*.000            (274 images)
│        ├ BRDM_2/*.001         (274 images)
│        ├ D7/*.005             (274 images)
│        ├ SLICY
│        ├ T62/*.016            (273 images)
│        ├ ZIL131/*.025         (274 images)
│        └ ZSU_23_4/*.026       (274 images)
└ ...
Quick Start Guide for Training
  • Dataset Preparation
    • Download the dataset.zip
    • After extracting it, you can find train and test directories inside raw directory.
    • Place the two directories (train and test) to the dataset/soc/raw.
$ cd src/data 
$ python3 generate_dataset.py --is_train=True --use_phase=True --chip_size=100 --patch_size=94 --use_phase=True --dataset=soc 
$ python3 generate_dataset.py --is_train=False --use_phase=True --chip_size=128 --patch_size=128  --use_phase=True --dataset=soc
$ cd ..
$ python3 train.py --config_name=config/AConvNet-SOC.json
Results of SOC
  • Final Accuracy is 99.34% at epoch 29 (The official accuracy is 99.13%)

  • You can see the details in notebook/experiments-SOC.ipynb

  • Visualization of training loss and test accuracy

soc-training-plot

  • Confusion Matrix with best model at epoch 28

soc-confusion-matrix

  • Noise Simulation [1]
    • i.i.d samples from a uniform distribution
    • This simulation does not fix the random seed
Noise 1% 5% 10% 15%
AConvNet-PyTorch 98.64 94.10 84.54 71.55
AConvNet-Official 91.76 88.52 75.84 54.68

Extended Operating Conditions (EOC)

EOC-1 (Large depression angle change)

Train Test
Class Serial No. Depression No. Images Depression No. Images
T-72 A64 17 299 30 196
2S1 b01 17 299 30 274
BRDM-2 E-71 17 298 30 274
ZSU-234 d08 17 299 30 274
Training Set (Depression: 17$\degree$)
MSTAR-PublicT72Variants-CD2/MSTAR_PUBLIC_T_72_VARIANTS_CD2
├ 17_DEG/COL2/SCENE1
│    └ A64/*.024   (299 images)
└ ...

MSTAR-PublicMixedTargets-CD2/MSTAR_PUBLIC_MIXED_TARGETS_CD2
├ 17_DEG
│    └ COL2/SCENE1
│        ├ 2S1/*.000            (299 images)
│        ├ BRDM_2/*.001         (298 images)
│        └ ZSU_23_4/*.026       (299 images)
└ ...
Test Set (Depression: 30$\degree$)
MSTAR-PublicT72Variants-CD2/MSTAR_PUBLIC_T_72_VARIANTS_CD2
├ 30_DEG/COL2/SCENE1
│    └ A64/*.024   (288 images)
└ ...

MSTAR-PublicMixedTargets-CD2/MSTAR_PUBLIC_MIXED_TARGETS_CD2
├ 30_DEG
│    └ COL2/SCENE1
│        ├ 2S1/*.000            (288 images)
│        ├ BRDM_2/*.001         (287 images)
│        ├ ZSU_23_4/*.026       (288 images)
│        └ ...
└ ...
Quick Start Guide for Training
  • Dataset Preparation
    • Download the dataset.zip
    • After extracting it, you can find train and test directories inside raw directory.
    • Place the two directories (train and test) to the dataset/eoc-1-t72-a64/raw.
$ cd src/data 
$ python3 generate_dataset.py --is_train=True --use_phase=True --chip_size=100 --patch_size=94 --use_phase=True --dataset=eoc-1-t72-a64 
$ python3 generate_dataset.py --is_train=False --use_phase=True --chip_size=128 --patch_size=128  --use_phase=True --dataset=eoc-1-t72-a64
$ cd ..
$ python3 train.py --config_name=config/AConvNet-EOC-1-T72-A64.json
Results of EOC-1
  • Final Accuracy is 91.49% at epoch 17 (The official accuracy is 96.12%)

  • You can see the details in notebook/experiments-EOC-1-T72-A64.ipynb

  • Visualization of training loss and test accuracy

eoc-1-training-plot

  • Confusion Matrix with best model at epoch 28

eoc-1-confusion-matrix

EOC-2 (Target configuration variants)

Train Test
Class Serial No. Depression No. Images Depression No. Images
BMP-2 9563 17 233 - -
BRDM-2 E-71 17 298 - -
BTR-70 c71 17 233 - -
T-72 132 17 232 - -
T-72 S7 - - 15, 17 419
T-72 A32 - - 15, 17 572
T-72 A62 - - 15, 17 573
T-72 A63 - - 15, 17 573
T-72 A64 - - 15, 17 573
Training Set (Depression: 17$\degree$)
# BMP2, BRDM2, BTR70, T72 are selected from SOC training data
Test Set (Depression: 15$\degree$)
MSTAR-PublicTargetChips-T72-BMP2-BTR70-SLICY/MSTAR_PUBLIC_TARGETS_CHIPS_T72_BMP2_BTR70_SLICY
├ TARGETS/TRAIN/17_DEG
│    └ T72/SN_S7/*.017   (228 images)
└ ...

MSTAR-PublicT72Variants-CD2/MSTAR_PUBLIC_T_72_VARIANTS_CD2
├ 17_DEG/COL2/SCENE1
│    ├ A32/*.017   (299 images)
│    ├ A62/*.018   (299 images)
│    ├ A63/*.019   (299 images)
│    ├ A64/*.020   (299 images)
├    └ ...
└ ...

MSTAR-PublicTargetChips-T72-BMP2-BTR70-SLICY/MSTAR_PUBLIC_TARGETS_CHIPS_T72_BMP2_BTR70_SLICY
├ TARGETS/TEST/15_DEG
│    └ T72/SN_S7/*.017   (191 images)
└ ...

MSTAR-PublicT72Variants-CD1/MSTAR_PUBLIC_T_72_VARIANTS_CD1
├ 15_DEG/COL2/SCENE1
│    ├ A32/*.017   (274 images)
│    ├ A62/*.018   (274 images)
│    ├ A63/*.019   (274 images)
│    ├ A64/*.020   (274 images)
├    └ ...
└ ...
Quick Start Guide for Training
  • Dataset Preparation
    • Download the dataset.zip
    • After extracting it, you can find train and test directories inside raw directory.
    • Place the two directories (train and test) to the dataset/eoc-2-cv/raw.
$ cd src/data 
$ python3 generate_dataset.py --is_train=True --use_phase=True --chip_size=100 --patch_size=94 --use_phase=True --dataset=eoc-2-cv 
$ python3 generate_dataset.py --is_train=False --use_phase=True --chip_size=128 --patch_size=128  --use_phase=True --dataset=eoc-2-cv
$ cd ..
$ python3 train.py --config_name=config/AConvNet-EOC-2-CV.json
Results of EOC-2 Configuration Variants
  • Final Accuracy is 99.41% at epoch 95 (The official accuracy is 98.93%)

  • You can see the details in notebook/experiments-EOC-2-CV.ipynb

  • Visualization of training loss and test accuracy

eoc-2-cv-training-plot

  • Confusion Matrix with best model at epoch 95

eoc-2-cv-confusion-matrix

EOC-2 (Target version variants)

Train Test
Class Serial No. Depression No. Images Depression No. Images
BMP-2 9563 17 233 - -
BRDM-2 E-71 17 298 - -
BTR-70 c71 17 233 - -
T-72 132 17 232 - -
BMP-2 9566 - - 15, 17 428
BMP-2 c21 - - 15, 17 429
T-72 812 - - 15, 17 426
T-72 A04 - - 15, 17 573
T-72 A05 - - 15, 17 573
T-72 A07 - - 15, 17 573
T-72 A10 - - 15, 17 567
Training Set (Depression: 17$\degree$)
# BMP2, BRDM2, BTR70, T72 are selected from SOC training data
Test Set (Depression: 15$\degree$)
MSTAR-PublicTargetChips-T72-BMP2-BTR70-SLICY/MSTAR_PUBLIC_TARGETS_CHIPS_T72_BMP2_BTR70_SLICY
├ TARGETS/TRAIN/17_DEG
│    ├ BMP2/SN_9566/*.001 (232 images)
│    ├ BMP2/SN_C21/*.002 (233 images)
│    ├ T72/SN_812/*.016   (231 images)
│    └ ...
└ ...

MSTAR-PublicT72Variants-CD2/MSTAR_PUBLIC_T_72_VARIANTS_CD2
├ 17_DEG/COL2/SCENE1
│    ├ A04/*.017   (299 images)
│    ├ A05/*.018   (299 images)
│    ├ A07/*.019   (299 images)
│    ├ A10/*.020   (296 images)
├    └ ...
└ ...

MSTAR-PublicTargetChips-T72-BMP2-BTR70-SLICY/MSTAR_PUBLIC_TARGETS_CHIPS_T72_BMP2_BTR70_SLICY
├ TARGETS/TEST/15_DEG
│    ├ BMP2/SN_9566/*.001 (196 images)
│    ├ BMP2/SN_C21/*.002 (196 images)
│    ├ T72/SN_812/*.0176  (195 images)
│    └ ...
└ ...

MSTAR-PublicT72Variants-CD1/MSTAR_PUBLIC_T_72_VARIANTS_CD1
├ 15_DEG/COL2/SCENE1
│    ├ A04/*.017   (274 images)
│    ├ A05/*.018   (274 images)
│    ├ A07/*.019   (274 images)
│    ├ A10/*.020   (271 images)
├    └ ...
└ ...
Quick Start Guide for Training
  • Dataset Preparation
    • Download the dataset.zip
    • After extracting it, you can find train and test directories inside raw directory.
    • Place the two directories (train and test) to the dataset/eoc-2-vv/raw.
$ cd src/data 
$ python3 generate_dataset.py --is_train=True --use_phase=True --chip_size=100 --patch_size=94 --use_phase=True --dataset=eoc-2-vv 
$ python3 generate_dataset.py --is_train=False --use_phase=True --chip_size=128 --patch_size=128  --use_phase=True --dataset=eoc-2-vv
$ cd ..
$ python3 train.py --config_name=config/AConvNet-EOC-2-CV.json
Results of EOC-2 Version Variants
  • Final Accuracy is 97.17% at epoch 88 (The official accuracy is 98.60%)

  • You can see the details in notebook/experiments-EOC-2-VV.ipynb

  • Visualization of training loss and test accuracy

eoc-2-vv-training-plot

  • Confusion Matrix with best model at epoch 88

eoc-2-vv-confusion-matrix

Outlier Rejection

Train Test Remarks.
Class Serial No. Depression No. Images Depression No. Images Type.
BMP-2 9563 17 233 15 196 Known
BTR-70 c71 17 233 15 196 Known
T-72 132 17 232 15 196 Known
2S1 b01 17 - 15 274 Confuser
ZSU-234 d08 17 - 15 274 Confuser
Training Set (Known targets in Depression: 17$\degree$)
MSTAR-PublicTargetChips-T72-BMP2-BTR70-SLICY/MSTAR_PUBLIC_TARGETS_CHIPS_T72_BMP2_BTR70_SLICY
├ TARGETS/TRAIN/17_DEG    # KNOWN
│    ├ BMP2/SN_9563/*.000 (233 images)
│    ├ BTR70/SN_C71/*.004 (233 images)
│    └ T72/SN_132/*.015   (232 images)
└ ...

MSTAR-PublicMixedTargets-CD2/MSTAR_PUBLIC_MIXED_TARGETS_CD2
├ 17_DEG                  # Confuser
│    └ COL2/SCENE1
│        ├ 2S1/*.000            (299 images)
│        └ ZIL131/*.025         (299 images)
└ ...
Test Set (Known targets and confuser targets in Depression: 15$\degree$)
MSTAR-PublicTargetChips-T72-BMP2-BTR70-SLICY/MSTAR_PUBLIC_TARGETS_CHIPS_T72_BMP2_BTR70_SLICY
├ TARGETS/TEST/15_DEG     # KNOWN
│    ├ BMP2/SN_9563/*.000 (195 images)
│    ├ BTR70/SN_C71/*.004 (196 images)
│    └ T72/SN_132/*.015   (196 images)
└ ...

MSTAR-PublicMixedTargets-CD1/MSTAR_PUBLIC_MIXED_TARGETS_CD1
├ 15_DEG                  # Confuser
│    └ COL2/SCENE1
│        ├ 2S1/*.000            (274 images)
│        └ ZIL131/*.025         (274 images)
└ ...
Quick Start Guide for Training
  • Dataset Preparation
    • Download the dataset.zip
    • After extracting it, you can find train and test directories inside raw directory.
    • Place the two directories (train and test) to the dataset/confuser-rejection/raw.
$ cd src/data 
$ python3 generate_dataset.py --is_train=True --use_phase=True --chip_size=100 --patch_size=94 --use_phase=True --dataset=confuser-rejection 
$ python3 generate_dataset.py --is_train=False --use_phase=True --chip_size=128 --patch_size=128  --use_phase=True --dataset=confuser-rejection
$ cd ..
$ 
$ # Remove Confuser objects when training to check validation accuracy with known targets
$ cd ../dataset/confuser-rejection/test
$ rm -rf 2S1
$ rm -rf ZIL131
$ cd -
$
$ python3 train.py --config_name=config/AConvNet-CR.json
$
$ # Restore the unknown targets 
$ cd ../dataset/confuser-rejection/
$ rm -rf test
$ python3 generate_dataset.py --is_train=False --use_phase=True --chip_size=128 --patch_size=128  --use_phase=True --dataset=confuser-rejection
Results of Outlier Rejection
  • Final Accuracy for known targets is 98.81% at epoch 39

  • You can see the details in notebook/experiments-CR.ipynb

  • Visualization of training loss and test accuracy

cr-training-plot

  • Confusion Matrix with best model at epoch 88

cr-confusion-matrix

  • Outlier Rejection: TODO: LOoking for more details..
# Rules
output_probability = model(image)
is_confuser = output_probability < thresh

if sum(is_confuser) == 3:
    target is confuser
else:
    target is known

cr-roc

Details about the specific environment of this repository

OS Ubuntu 20.04 LTS
CPU Intel i7-10700k
GPU RTX 2080Ti 11GB
Memory 32GB
SSD 500GB
HDD 2TB

Citation

@ARTICLE{7460942,
  author={S. {Chen} and H. {Wang} and F. {Xu} and Y. {Jin}},
  journal={IEEE Transactions on Geoscience and Remote Sensing}, 
  title={Target Classification Using the Deep Convolutional Networks for SAR Images}, 
  year={2016},
  volume={54},
  number={8},
  pages={4806-4817},
  doi={10.1109/TGRS.2016.2551720}
}

References

[1] G. Dong, N. Wang, and G. Kuang, "Sparse representation of monogenic signal: With application to target recognition in SAR images," IEEE Signal Process. Lett., vol. 21, no. 8, pp. 952-956, Aug. 2014.


TODO

  • Implementation
    • Data generation
      • SOC
      • EOC
      • Outlier Rejection
      • End-to-End SAR-ATR
    • Data Loader
      • SOC
      • EOC
      • Outlier Rejection
      • End-to-End SAR-ATR
    • Model
      • Network
      • Training
      • Early Stopping
      • Hyper-parameter Optimization
    • Experiments
      • Reproduce the SOC Results
      • Reproduce the EOC Results
      • Reproduce the outlier rejection
      • Reproduce the end-to-end SAR-ATR

About

In the requirements.txt, tensorboard is not present

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 97.1%
  • Python 2.8%
  • Other 0.1%