-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomputing_ROSC_sets.m
96 lines (79 loc) · 2.72 KB
/
computing_ROSC_sets.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
% Author: Mehran Attar
% Written: 10-December-2023
% Last update: --------------
% Last revision: 10-December-2023
%------------- BEGIN CODE --------------
clc
clear all
close all
rand('seed',1);
% Discrete system x(k+1)=Ax(k)+Bu(k).
w = warning ('off','all');
rmpath('folderthatisnotonpath')
warning(w)
% defining system matrices
Ad=[0.993 0.003;0.007 0.982];
Bd=[0.008 -0.003 -0.003;0 0.003 0.003];
Cd = eye(2);
Dd = 0;
dim_x = size(Ad,1);
dim_u = size(Bd,2);
model = LTISystem('A',Ad,'B',Bd);
% defining constraints
X = zonotope(interval([-0.48;-0.48],[0.3;0.3])); % constraints on states
U = zonotope(interval([-0.7778;-1.25;-1.4765],[0.611;0.75;0.5235])); % constraint on input
W = zonotope(zeros(dim_x,1),0.001*eye(dim_x)); % noise zonotope
% Design Terminal RCI region for model-based
% quadratic penalties
model.x.penalty = QuadFunction([2 0; 0 1]);
model.u.penalty = QuadFunction(eye(3));
% get the LQR feedback
K = model.LQRGain;
%Find the terminal region
Acl = Ad+(Bd*K);
%compute RCI region
alpha = 0.9;
T0 = computeRPI(Acl,alpha,W.mptPolytope.P);
% Considering an over-approximation of the RCI set
X0 = zonotope(zeros(2,1),0.03*[0 -1 1;-1 1 1]);
% Visualization of the RCI set and it's zonotopic over-approximation set
figure;
plot(X0,[1 2],'r--','LineWidth',1)
hold on
plot(T0,'Alpha',0.3,'color','g');
xlabel('$x_1$','interpreter','latex','FontSize',20)
ylabel('$x_2$','interpreter','latex','FontSize',20)
legend(['RCI set based on model'],['Zonotopic over-approximation of RCI '])
box off
%% compute all possible A and B
sys = ss(Ad,Bd,Cd,Dd); % define system
[V_AB,AB] = compute_AB(sys,X,U,W);
for i=1:size(V_AB,1)
A_hat{i} = V_AB{i}(1:size(Ad,1),1:size(Ad,1));
B_hat{i} = V_AB{i}(1:size(Ad,1),size(Ad,1)+1:size(Ad,1)+size(Bd,2));
end
%% Computing ROSC sets
close all
% initialization of ROSC sets
Td{1} = X0; % target set
N = 40; % number of ROSC sets
temp_gen = 0.1*[1 -1 1;0 2 1]; % define a template for computing a zonotopic inner approximation of ROSC sets
%
for step=1: N
for j=1:size(A_hat,2)
presets{j} = (inv(A_hat{j})*((Td{step}.mptPolytope.P - W.mptPolytope.P)...
+ (-B_hat{j}*U.mptPolytope.P)));
end
%
Td{step+1} = compute_intersec(presets)& X.mptPolytope.P;
[Td{step+1},alpha] = poly_approx(Td{step+1}, size(temp_gen,2), temp_gen); % computing zonotopic inner approximation of ROSC sets
Td_aug{step+1} = zonotope([Td{step+1}.center;U.center],[Td{step+1}.generators;U.generators]); % Augmented ROSC sets
step
% Visualization of ROSC sets
handleData = plot(Td{step+1});
hold on
pause(0.1)
end
%% Saving ROSC sets
save('Td')
save('Td_aug')