Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works
- Python (verified: v3.8)
- CUDA (verified: v11.1)
- Packages (see requirements.txt)
We follow dygiepp for data preprocessing.
text2et
: Event Type Detectionettext2tri
: Trigger Extractionetrttext2role
: Argument Extraction
# data processed by dyieapp
data/text2target/dyiepp_ace1005_ettext2tri_subtype
├── event.schema
├── test.json
├── train.json
└── val.json
# data processed by data_convert.convert_text_to_target
data/text2target/dyiepp_ace1005_ettext2tri_subtype
├── event.schema
├── test.json
├── train.json
└── val.json
Useful commands:
python -m data_convert.convert_text_to_target # data/raw_data -> data/text2target
python convert_dyiepp_to_sentence.py data/raw_data/dyiepp_ace2005 # doc -> sentence, used in evaluation
Relevant scripts:
run_seq2seq.py
: Python code entry, modified from the transformers/examples/seq2seq/run_seq2seq.pyrun_seq2seq_span.bash
: Model training script logging to the log file.
Example (see the above two files for more details):
# ace05 event type detection t5-base, the metric_format use eval_trigger-F1
bash run_seq2seq_span.bash --data=dyiepp_ace2005_text2et_subtype --model=t5-base --format=et --metric_format=eval_trigger-F1
# ace05 tri extraction t5-base
bash run_seq2seq_span.bash --data=dyiepp_ace2005_ettext2tri_subtype --model=t5-base --format=tri --metric_format=eval_trigger-F1
# ace05 argument extraction t5-base
bash run_seq2seq_span.bash --data=dyiepp_ace2005_etrttext2role_subtype --model=t5-base --format=role --metric_format=eval_role-F1
Trained models are saved in the models/
folder.
The event type detection use the same output format and metric_format as trigger extraction, so the et exp result is included in eval_trigger-* and test_trigger-* of the log.
run_tri_predict.bash
: trigger extraction evaluation and inference script.run_arg_predict.bash
: argument extraction evaluation and inference script.
Please give us a ⭐ and cite our paper as
@inproceedings{si2021-GDAP,
title={Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works},
author={Jinghui Si and Xutan Peng and Chen Li and Haotian Xu and Jianxin Li},
booktitle={IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
year={2022}
}
This project borrows code from Text2Event