Skip to content
New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

Deterministic implementation of prime factors recovery #380

78 changes: 76 additions & 2 deletions src/algorithms/rsa.rs
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,10 @@
use alloc::borrow::Cow;
use alloc::vec::Vec;
use num_bigint::{BigInt, BigUint, IntoBigInt, IntoBigUint, ModInverse, RandBigInt, ToBigInt};
use num_traits::{One, Signed, Zero};
use num_integer::{sqrt, Integer};
use num_traits::{FromPrimitive, One, Pow, Signed, Zero};
use rand_core::CryptoRngCore;
use zeroize::Zeroize;
use zeroize::{Zeroize, Zeroizing};

use crate::errors::{Error, Result};
use crate::traits::{PrivateKeyParts, PublicKeyParts};
Expand Down Expand Up @@ -194,3 +195,76 @@ fn blind<R: CryptoRngCore, K: PublicKeyParts>(
fn unblind(key: &impl PublicKeyParts, m: &BigUint, unblinder: &BigUint) -> BigUint {
(m * unblinder) % key.n()
}

/// The following (deterministic) algorithm also recovers the prime factors `p` and `q` of a modulus `n`, given the
/// public exponent `e` and private exponent `d` using the method described in
/// [NIST 800-56B Appendix C.2](https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br2.pdf).
tarcieri marked this conversation as resolved.
Show resolved Hide resolved
pub fn recover_primes(n: &BigUint, e: &BigUint, d: &BigUint) -> Result<(BigUint, BigUint)> {
// Check precondition
let two = BigUint::from_u8(2).unwrap();
if e <= &two.pow(16u32) || e >= &two.pow(256u32) {
return Err(Error::InvalidArguments);
}

// 1. Let a = (de – 1) × GCD(n – 1, de – 1).
let one = BigUint::one();
let a = Zeroizing::new((d * e - &one) * (n - &one).gcd(&(d * e - &one)));

// 2. Let m = floor(a /n) and r = a – m n, so that a = m n + r and 0 ≤ r < n.
let m = Zeroizing::new(&*a / n);
let r = Zeroizing::new(&*a - &*m * n);

// 3. Let b = ( (n – r)/(m + 1) ) + 1; if b is not an integer or b^2 ≤ 4n, then output an error indicator,
// and exit without further processing.
let modulus_check = Zeroizing::new((n - &*r) % (&*m + &one));
if !modulus_check.is_zero() {
return Err(Error::InvalidArguments);
}
let b = Zeroizing::new((n - &*r) / (&*m + &one) + one);

let four = BigUint::from_u8(4).unwrap();
let four_n = Zeroizing::new(n * four);
let b_squared = Zeroizing::new(b.pow(2u32));
if *b_squared <= *four_n {
return Err(Error::InvalidArguments);
}
let b_squared_minus_four_n = Zeroizing::new(&*b_squared - &*four_n);

// 4. Let ϒ be the positive square root of b^2 – 4n; if ϒ is not an integer,
// then output an error indicator, and exit without further processing.
let y = Zeroizing::new(sqrt((*b_squared_minus_four_n).clone()));

let y_squared = Zeroizing::new(y.pow(2u32));
let sqrt_is_whole_number = y_squared == b_squared_minus_four_n;
if !sqrt_is_whole_number {
return Err(Error::InvalidArguments);
}
let p = (&*b + &*y) / &two;
let q = (&*b - &*y) / two;

Ok((p, q))
}

#[cfg(test)]
mod tests {
use num_traits::FromPrimitive;

use super::*;

#[test]
fn recover_primes_works() {
let n = BigUint::parse_bytes(b"00d397b84d98a4c26138ed1b695a8106ead91d553bf06041b62d3fdc50a041e222b8f4529689c1b82c5e71554f5dd69fa2f4b6158cf0dbeb57811a0fc327e1f28e74fe74d3bc166c1eabdc1b8b57b934ca8be5b00b4f29975bcc99acaf415b59bb28a6782bb41a2c3c2976b3c18dbadef62f00c6bb226640095096c0cc60d22fe7ef987d75c6a81b10d96bf292028af110dc7cc1bbc43d22adab379a0cd5d8078cc780ff5cd6209dea34c922cf784f7717e428d75b5aec8ff30e5f0141510766e2e0ab8d473c84e8710b2b98227c3db095337ad3452f19e2b9bfbccdd8148abf6776fa552775e6e75956e45229ae5a9c46949bab1e622f0e48f56524a84ed3483b", 16).unwrap();
let e = BigUint::from_u64(65537).unwrap();
let d = BigUint::parse_bytes(b"00c4e70c689162c94c660828191b52b4d8392115df486a9adbe831e458d73958320dc1b755456e93701e9702d76fb0b92f90e01d1fe248153281fe79aa9763a92fae69d8d7ecd144de29fa135bd14f9573e349e45031e3b76982f583003826c552e89a397c1a06bd2163488630d92e8c2bb643d7abef700da95d685c941489a46f54b5316f62b5d2c3a7f1bbd134cb37353a44683fdc9d95d36458de22f6c44057fe74a0a436c4308f73f4da42f35c47ac16a7138d483afc91e41dc3a1127382e0c0f5119b0221b4fc639d6b9c38177a6de9b526ebd88c38d7982c07f98a0efd877d508aae275b946915c02e2e1106d175d74ec6777f5e80d12c053d9c7be1e341", 16).unwrap();
let p = BigUint::parse_bytes(b"00f827bbf3a41877c7cc59aebf42ed4b29c32defcb8ed96863d5b090a05a8930dd624a21c9dcf9838568fdfa0df65b8462a5f2ac913d6c56f975532bd8e78fb07bd405ca99a484bcf59f019bbddcb3933f2bce706300b4f7b110120c5df9018159067c35da3061a56c8635a52b54273b31271b4311f0795df6021e6355e1a42e61",16).unwrap();
let q = BigUint::parse_bytes(b"00da4817ce0089dd36f2ade6a3ff410c73ec34bf1b4f6bda38431bfede11cef1f7f6efa70e5f8063a3b1f6e17296ffb15feefa0912a0325b8d1fd65a559e717b5b961ec345072e0ec5203d03441d29af4d64054a04507410cf1da78e7b6119d909ec66e6ad625bf995b279a4b3c5be7d895cd7c5b9c4c497fde730916fcdb4e41b", 16).unwrap();

let (mut p1, mut q1) = recover_primes(&n, &e, &d).unwrap();

if p1 < q1 {
std::mem::swap(&mut p1, &mut q1);
}
assert_eq!(p, p1);
assert_eq!(q, q1);
}
}
4 changes: 4 additions & 0 deletions src/errors.rs
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,9 @@ pub enum Error {

/// Invalid padding length.
InvalidPadLen,

/// Invalid arguments.
InvalidArguments,
}

#[cfg(feature = "std")]
Expand Down Expand Up @@ -91,6 +94,7 @@ impl core::fmt::Display for Error {
Error::Internal => write!(f, "internal error"),
Error::LabelTooLong => write!(f, "label too long"),
Error::InvalidPadLen => write!(f, "invalid padding length"),
Error::InvalidArguments => write!(f, "invalid arguments"),
}
}
}
Expand Down
22 changes: 18 additions & 4 deletions src/key.rs
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,8 @@ use serde::{Deserialize, Serialize};
use zeroize::{Zeroize, ZeroizeOnDrop};

use crate::algorithms::generate::generate_multi_prime_key_with_exp;
use crate::algorithms::rsa::recover_primes;

use crate::dummy_rng::DummyRng;
use crate::errors::{Error, Result};
use crate::traits::{PaddingScheme, PrivateKeyParts, PublicKeyParts, SignatureScheme};
Expand Down Expand Up @@ -232,12 +234,19 @@ impl RsaPrivateKey {
n: BigUint,
e: BigUint,
d: BigUint,
primes: Vec<BigUint>,
mut primes: Vec<BigUint>,
) -> Result<RsaPrivateKey> {
// TODO(tarcieri): support recovering `p` and `q` from `d` if `primes` is empty
// See method in Appendix C: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf
let mut should_validate = false;
if primes.len() < 2 {
return Err(Error::NprimesTooSmall);
if !primes.is_empty() {
return Err(Error::NprimesTooSmall);
}
// Recover `p` and `q` from `d`.
// See method in Appendix C.2: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br2.pdf
let (p, q) = recover_primes(&n, &e, &d)?;
primes.push(p);
primes.push(q);
should_validate = true;
}

let mut k = RsaPrivateKey {
Expand All @@ -247,6 +256,11 @@ impl RsaPrivateKey {
precomputed: None,
};

// Validate the key if we had to recover the primes.
if should_validate {
k.validate()?;
}

// precompute when possible, ignore error otherwise.
let _ = k.precompute();

Expand Down