Skip to content

Added reinit! for NewtonRaphson #173

New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

Merged
merged 1 commit into from
Mar 28, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 19 additions & 0 deletions src/raphson.jl
Original file line number Diff line number Diff line change
@@ -198,3 +198,22 @@ function SciMLBase.solve!(cache::NewtonRaphsonCache)
SciMLBase.build_solution(cache.prob, cache.alg, cache.u, cache.fu;
retcode = cache.retcode)
end

function SciMLBase.reinit!(cache::NewtonRaphsonCache{iip}, u0 = cache.u0; p = cache.p,
abstol = cache.abstol, maxiters = cache.maxiters) where {iip}
cache.p = p
if iip
recursivecopy!(cache.u, u0)
cache.f(cache.fu, cache.u, p)
else
# don't have alias_u0 but cache.u is never mutated for OOP problems so it doesn't matter
cache.u = u0
cache.fu = cache.f(cache.u, p)
end
cache.abstol = abstol
cache.maxiters = maxiters
cache.iter = 1
cache.force_stop = false
cache.retcode = ReturnCode.Default
return cache
end
31 changes: 31 additions & 0 deletions test/basictests.jl
Original file line number Diff line number Diff line change
@@ -111,6 +111,37 @@ end
@test gnewton(p) ≈ [sqrt(p[2] / p[1])]
@test ForwardDiff.jacobian(gnewton, p) ≈ ForwardDiff.jacobian(t, p)

# Iterator interface
f = (u, p) -> u * u - p
g = function (p_range)
probN = NonlinearProblem{false}(f, 0.5, p_range[begin])
cache = init(probN, NewtonRaphson(); maxiters = 100, abstol=1e-10)
sols = zeros(length(p_range))
for (i, p) in enumerate(p_range)
reinit!(cache, cache.u; p = p)
sol = solve!(cache)
sols[i] = sol.u
end
return sols
end
p = range(0.01, 2, length = 200)
@test g(p) ≈ sqrt.(p)

f = (res, u, p) -> (res[begin] = u[1] * u[1] - p)
g = function (p_range)
probN = NonlinearProblem{true}(f, [0.5], p_range[begin])
cache = init(probN, NewtonRaphson(); maxiters = 100, abstol=1e-10)
sols = zeros(length(p_range))
for (i, p) in enumerate(p_range)
reinit!(cache, [cache.u[1]]; p = p)
sol = solve!(cache)
sols[i] = sol.u[1]
end
return sols
end
p = range(0.01, 2, length = 200)
@test g(p) ≈ sqrt.(p)

# Error Checks

f, u0 = (u, p) -> u .* u .- 2.0, @SVector[1.0, 1.0]