Skip to content

Python library for Natural Language Understanding

Notifications You must be signed in to change notification settings

SilvioMessi/nlu

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NLU

Python library for NLU (Natural Language Understanding).
This python library allows to identify intents and entities present in a sentence, starting from a train set of examples.

Installation

pip install git+https://github.com/SilvioMessi/nlu.git 

Dependencies

  • Stanford CoreNLP
    At the moment all the NLP (Natural Language Processing) task are made by Stanford CoreNLP, used like external server.
    Before use NLU library make sure that an instance of CoreNLP Server is correctly running on port 9000.
  • Wordnet
    The NLU library use Wordnet.
    Before use NLU library make sure that Wordnet corpora is correctly "intstalled" by NTLK.

Basic Usage

from nlu.entity_recognizer import EntityRecognizer
from nlu.intent_recognizer import IntentRecognizer

entity_recongizer = EntityRecognizer()
intent_recognizer = IntentRecognizer()
    
# load entities definitions from datastore and put them in data structure
 entities = {
  'pizza_type': {
    'Margherita' : ['Margherita', 'margherita'],
    'Neapolitan' : ['Neapolitan', 'neapolitan'],
    'Sicilian' : ['Sicilian', 'sicilian']
  },
  'drink_type' : {
    'Coca-Cola' : ['Coca-Cola', 'coca cola', 'coke'],
    'Beer' : ['Beer', 'beer'],
    'Water' : ['Water', 'water'],
    'Wine' : ['Wine', 'wine']
  }
}

# load intents definitions from datastore and put them in data structure
intents = {
  'order_a_pizza': ['Can i have a pizza margherita?', 'A pizza margherita, please !', 'Two margherita please!'],
  'order_a_drink': ['Can i have a can of coke?', 'I\'ll have a glass of wine!']
}

# intents definitions can be pre tagged with entities
intents_pre_tagged = {
  'order_a_pizza': ['Can i have a pizza pizza_type?', 'A pizza pizza_type, please !', 'Two pizza_type please!'],
  'order_a_drink': ['Can i have a can of drink_type?', 'I\'ll have a glass of drink_type!']
}

new_sentence = 'I want order a pizza margherita and a can of coca cola!'

# find entities in new sentence
sentence_tokens, final_entities_positions, tagged_sentence = entity_recongizer.get_entities(entities, new_sentence, tag_sentence=True)

print(sentence_tokens)
['I', 'want', 'order', 'a', 'pizza', 'margherita', 'and', 'a', 'can', 'of', 'coca', 'cola', '!']

print(final_entities_positions)
[{'entity_id': 'pizza_type', 'value_id': 'Margherita', 'start': 21, 'end': 31}, {'entity_id': 'drink_type', 'value_id': 'Coca-Cola', 'start': 45, 'end': 54}]

# if parameter tag_sentence=True
print(tagged_sentence)
I want order a pizza pizza_type and a can of drink_type !

# find intents probabilities 
intents_probabilities = intent_recognizer.get_intents_probabilities(intents, new_sentence)

print(intents_probabilities)
{'order_a_pizza': 0.51000000000000001, 'order_a_drink': 0.161}

# better performance can be achieved used tagged sentences
intents_probabilities = intent_recognizer.get_intents_probabilities(intents_pre_tagged, tagged_sentence)

print(intents_probabilities)
{'order_a_pizza': 0.53653846153846152, 'order_a_drink': 0.23928846153846156}

About

Python library for Natural Language Understanding

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages