-
Notifications
You must be signed in to change notification settings - Fork 309
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Giridhar Ganapavarapu <giridhar.ganapavarapu@ibm.com>
- Loading branch information
1 parent
4f14691
commit 2fabe72
Showing
2 changed files
with
64 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
import os | ||
import math | ||
from io import StringIO | ||
import requests | ||
import pandas as pd | ||
from sklearn.model_selection import train_test_split | ||
|
||
|
||
class DiabetesDataset: | ||
"""This dataset consists of 10 baseline variables, age, sex, body mass index, average | ||
blood pressure, and six blood serum measurements were obtained for each of n = 442 | ||
diabetes patients, as well as the response of interest, a quantitative measure of disease | ||
progression one year after baseline. | ||
References: | ||
.. [#1] Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani, "Least Angle Regression," | ||
.. [#2] https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html | ||
""" | ||
|
||
def __init__(self): | ||
self.data_folder = os.path.realpath( | ||
os.path.join( | ||
os.path.dirname(os.path.realpath(__file__)), "../data", "diabetes_data" | ||
) | ||
) | ||
self.data_file = os.path.realpath( | ||
os.path.join(self.data_folder, "diabetes.csv") | ||
) | ||
diabetes_url = "https://www4.stat.ncsu.edu/~boos/var.select/diabetes.tab.txt" | ||
|
||
if not os.path.exists(self.data_file): | ||
response = requests.get(diabetes_url) | ||
data = pd.read_csv(StringIO(response.text), sep="\t") | ||
data.to_csv(self.data_file, index=False) | ||
|
||
def load_data(self, return_only_numerical=True, test_size=0.3, random_state=None): | ||
""" | ||
Prepares train and test dataframes. | ||
Returns: | ||
x_train (np.ndarray): Train data in numpy format. | ||
x_test (np.ndarray): Test data in numpy format. | ||
y_train (np.ndarray): Train labels in numpy format. | ||
x_test (np.ndarray): Test labels in numpy format. | ||
""" | ||
df = pd.read_csv(self.data_file) | ||
target_names = ["Y"] | ||
|
||
feature_names = df.columns.tolist() | ||
feature_names.remove(target_names[0]) | ||
|
||
if return_only_numerical: | ||
feature_names.remove("SEX") # categorical feature | ||
|
||
X = df[feature_names].values | ||
y = df[target_names].values.reshape(-1) | ||
|
||
x_train, x_test, y_train, y_test = train_test_split( | ||
X, y, test_size=test_size, random_state=random_state | ||
) | ||
|
||
return x_train, x_test, y_train, y_test, feature_names, target_names |