GraphMETRO: Mitigating Complex Graph Distribution Shifts via Mixture of Aligned Experts (NeurIPS 2024)
Please consider citing our paper:
@inproceedings{wu24graphmetro,
author = {Shirley Wu and
Kaidi Cao and
Bruno Ribeiro and
James Zou and
Jure Leskovec},
title = {GraphMETRO: Mitigating Complex Distribution Shifts in GNNs via Mixture of Aligned Experts},
booktitle = {NeurIPS},
year = {2024}
}
sh scripts/train_moe.sh
sh scripts/train_moe_good.sh
Please specify your own wandb_id
in scripts/*.sh
if use_wandb
is set to True.
conda create -n graphmetro python=3.9
conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch
conda install pyg -c pyg
pip install pandas matplotlib networkx yacs seaborn torchmetrics ogb==1.3.6 munch dive-into-graphs