Skip to content
This repository has been archived by the owner on Oct 23, 2023. It is now read-only.

Commit

Permalink
[im2col, test_im2col]: added support for non-equal padding
Browse files Browse the repository at this point in the history
  • Loading branch information
mmrahorovic committed Dec 12, 2020
1 parent 8e2279c commit c524020
Show file tree
Hide file tree
Showing 2 changed files with 91 additions and 48 deletions.
49 changes: 35 additions & 14 deletions src/finn/custom_op/general/im2col.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,19 @@
# of shape (batches, channels, height, width)


def compute_conv_output_dim_2D_padding(ifm_dim, k, stride, pad=0):
"""Returns spatial output dimension size for convolution with given params.
Pad denotes the total amount of padding among a certain dimension"""
if ifm_dim == 1:
out_dim = 1
else:
out_dim = int(((ifm_dim + pad - k) / stride) + 1)
return out_dim


def compute_conv_output_dim(ifm_dim, k, stride, pad=0):
"""Returns spatial output dimension size for convolution with given params."""
"""Returns spatial output dimension size for convolution with given params.
Pad is either 0 or 1"""
if ifm_dim == 1:
out_dim = 1
else:
Expand All @@ -25,8 +36,10 @@ def get_im2col_indices_nchw(
"""Returns im2col indices."""
# First figure out what the size of the output should be
N, C, H, W = x_shape
out_height = compute_conv_output_dim(H, field_height, stride_y, padding)
out_width = compute_conv_output_dim(W, field_width, stride_x, padding)
pad_H = padding[0] + padding[2]
pad_W = padding[1] + padding[3]
out_height = compute_conv_output_dim_2D_padding(H, field_height, stride_y, pad_H)
out_width = compute_conv_output_dim_2D_padding(W, field_width, stride_x, pad_W)

i0 = np.repeat(np.arange(field_height), field_width)
i0 = np.tile(i0, C)
Expand All @@ -53,21 +66,21 @@ def im2col_indices_nchw(
if H == 1: # Shape of input image is: (1, C, 1, W)
x_padded = np.pad(
x,
((0, 0), (0, 0), (0, 0), (p, p)),
((0, 0), (0, 0), (0, 0), (p[1], p[3])),
mode="constant",
constant_values=pad_val,
)
elif W == 1: # Shape of input image is: (1, C, H, 1)
x_padded = np.pad(
x,
((0, 0), (0, 0), (p, p), (0, 0)),
((0, 0), (0, 0), (p[0], p[2]), (0, 0)),
mode="constant",
constant_values=pad_val,
)
elif H > 1 and W > 1: # Shape of input image is: (1, C, H, W)
x_padded = np.pad(
x,
((0, 0), (0, 0), (p, p), (p, p)),
((0, 0), (0, 0), (p[0], p[2]), (p[1], p[3])),
mode="constant",
constant_values=pad_val,
)
Expand Down Expand Up @@ -101,7 +114,7 @@ def get_nodeattr_types(self):
"stride": ("i", True, 1),
"kernel_size": ("ints", True, []),
"input_shape": ("s", True, ""),
"pad_amount": ("i", False, 0),
"pad_amount": ("ints", False, [0, 0, 0, 0]), # default: no padding
"pad_value": ("i", False, 0),
# depthwise: if 1, infer ConvolutionInputGenerator with depthwise == 1
"depthwise": ("i", False, 0, {0, 1}),
Expand All @@ -111,7 +124,11 @@ def make_shape_compatible_op(self, model):
k = self.get_nodeattr("kernel_size") # Assumption: Height x Width
stride = self.get_nodeattr("stride")
ishape = self.get_nodeattr("input_shape")
pad = self.get_nodeattr("pad_amount")
pad = self.get_nodeattr(
"pad_amount"
) # padding: [H_begin, W_begin, H_end, W_end]
pad_H = pad[0] + pad[2]
pad_W = pad[1] + pad[3]

# convert string into list of integers
ishape = ishape.strip("(")
Expand Down Expand Up @@ -142,8 +159,8 @@ def make_shape_compatible_op(self, model):
k_W == 1
), "Unexpected kernel shape for input image of dimensions (N, H, 1, C)"

ofm_dim_H = compute_conv_output_dim(ifm_dim_H, k_H, stride, pad)
ofm_dim_W = compute_conv_output_dim(ifm_dim_W, k_W, stride, pad)
ofm_dim_H = compute_conv_output_dim_2D_padding(ifm_dim_H, k_H, stride, pad_H)
ofm_dim_W = compute_conv_output_dim_2D_padding(ifm_dim_W, k_W, stride, pad_W)

# implement tensor with correct shape
values = np.random.randn(1, ofm_dim_H, ofm_dim_W, k_H * k_W * ifm_ch).astype(
Expand Down Expand Up @@ -180,15 +197,18 @@ def execute_node(self, context, graph):

stride = self.get_nodeattr("stride")
pad = self.get_nodeattr("pad_amount")
pad_H = pad[0] + pad[2]
pad_W = pad[1] + pad[3]
pad_val = self.get_nodeattr("pad_value")
iname = node.input[0]
x = context[iname]
qnt_annotations = graph.quantization_annotation
ret = util.get_by_name(qnt_annotations, iname, "tensor_name")
ret = util.get_by_name(ret.quant_parameter_tensor_names, "finn_datatype", "key")
idt = DataType[ret.value]
if pad != 0:
assert idt.allowed(pad_val), "Im2Col dtype must allow pad_val"
for val in pad:
if val != 0:
assert idt.allowed(val), "Im2Col dtype must allow pad_val"
# check that input is NHWC
assert x.ndim == 4, "Unexpected number of input dims for Im2Col"
N, H, W, C = x.shape
Expand All @@ -202,8 +222,9 @@ def execute_node(self, context, graph):
k_W == 1
), "Unexpected kernel shape for input image of dimensions (N, H, 1, C)"

out_dim_H = compute_conv_output_dim(H, k_H, stride, pad)
out_dim_W = compute_conv_output_dim(W, k_W, stride, pad)
out_dim_H = compute_conv_output_dim_2D_padding(H, k_H, stride, pad_H)
out_dim_W = compute_conv_output_dim_2D_padding(W, k_W, stride, pad_W)

# internally convert input to NCHW
x = x.transpose(0, 3, 1, 2)
# call NCHW im2col implementation
Expand Down
90 changes: 56 additions & 34 deletions tests/custom_op/test_im2col.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
import finn.core.onnx_exec as oxe
from finn.core.datatype import DataType
from finn.core.modelwrapper import ModelWrapper
from finn.custom_op.general.im2col import compute_conv_output_dim
from finn.custom_op.general.im2col import compute_conv_output_dim_2D_padding
from finn.transformation.infer_datatypes import InferDataTypes
from finn.transformation.infer_shapes import InferShapes

Expand All @@ -23,10 +23,12 @@ def check_two_dict_for_equality(dict1, dict2):


def execution_im2col(
x, idt, k_H, k_W, stride, ifm_ch, ifm_dim_H, ifm_dim_W, pad_amt=0, pad_val=0
x, idt, k_H, k_W, stride, ifm_ch, ifm_dim_H, ifm_dim_W, pad_amt, pad_val=0
):
ofm_dim_H = compute_conv_output_dim(ifm_dim_H, k_H, stride, pad_amt)
ofm_dim_W = compute_conv_output_dim(ifm_dim_W, k_W, stride, pad_amt)
pad_amt_H = pad_amt[0] + pad_amt[2]
pad_amt_W = pad_amt[1] + pad_amt[3]
ofm_dim_H = compute_conv_output_dim_2D_padding(ifm_dim_H, k_H, stride, pad_amt_H)
ofm_dim_W = compute_conv_output_dim_2D_padding(ifm_dim_W, k_W, stride, pad_amt_W)

# set up onnx model
inp = helper.make_tensor_value_info(
Expand Down Expand Up @@ -103,11 +105,13 @@ def test_im2col():
ifm_ch = 1
ifm_dim_H = 4
ifm_dim_W = 4
pad_amt = 0
pad_amt = [0, 0, 0, 0]
pad_amt_H = pad_amt[0] + pad_amt[2]
pad_amt_W = pad_amt[1] + pad_amt[3]
pad_val = 0

ofm_dim_H = compute_conv_output_dim(ifm_dim_H, k_H, stride, pad_amt)
ofm_dim_W = compute_conv_output_dim(ifm_dim_W, k_W, stride, pad_amt)
ofm_dim_H = compute_conv_output_dim_2D_padding(ifm_dim_H, k_H, stride, pad_amt_H)
ofm_dim_W = compute_conv_output_dim_2D_padding(ifm_dim_W, k_W, stride, pad_amt_W)

x = np.asarray(
[
Expand Down Expand Up @@ -188,11 +192,13 @@ def test_im2col():
ifm_ch = 2
ifm_dim_H = 4
ifm_dim_W = 4
pad_amt = 0
pad_amt = [0, 0, 0, 0]
pad_amt_H = pad_amt[0] + pad_amt[2]
pad_amt_W = pad_amt[1] + pad_amt[3]
pad_val = 0

ofm_dim_H = compute_conv_output_dim(ifm_dim_H, k_H, stride, pad_amt)
ofm_dim_W = compute_conv_output_dim(ifm_dim_W, k_W, stride, pad_amt)
ofm_dim_H = compute_conv_output_dim_2D_padding(ifm_dim_H, k_H, stride, pad_amt_H)
ofm_dim_W = compute_conv_output_dim_2D_padding(ifm_dim_W, k_W, stride, pad_amt_W)

x = np.asarray(
[
Expand Down Expand Up @@ -244,11 +250,13 @@ def test_im2col():
ifm_ch = 2
ifm_dim_H = 4
ifm_dim_W = 4
pad_amt = 1
pad_amt = [1, 1, 1, 1]
pad_amt_H = pad_amt[0] + pad_amt[2]
pad_amt_W = pad_amt[1] + pad_amt[3]
pad_val = 0

ofm_dim_H = compute_conv_output_dim(ifm_dim_H, k_H, stride, pad_amt)
ofm_dim_W = compute_conv_output_dim(ifm_dim_W, k_W, stride, pad_amt)
ofm_dim_H = compute_conv_output_dim_2D_padding(ifm_dim_H, k_H, stride, pad_amt_H)
ofm_dim_W = compute_conv_output_dim_2D_padding(ifm_dim_W, k_W, stride, pad_amt_W)

x = np.asarray(
[
Expand Down Expand Up @@ -320,11 +328,13 @@ def test_im2col():
ifm_ch = 2
ifm_dim_H = 4
ifm_dim_W = 5
pad_amt = 0
pad_amt = [0, 0, 0, 0]
pad_amt_H = pad_amt[0] + pad_amt[2]
pad_amt_W = pad_amt[1] + pad_amt[3]
pad_val = 0

ofm_dim_H = compute_conv_output_dim(ifm_dim_H, k_H, stride, pad_amt)
ofm_dim_W = compute_conv_output_dim(ifm_dim_W, k_W, stride, pad_amt)
ofm_dim_H = compute_conv_output_dim_2D_padding(ifm_dim_H, k_H, stride, pad_amt_H)
ofm_dim_W = compute_conv_output_dim_2D_padding(ifm_dim_W, k_W, stride, pad_amt_W)

x = np.asarray(
[
Expand Down Expand Up @@ -379,11 +389,13 @@ def test_im2col():
ifm_ch = 2
ifm_dim_H = 4
ifm_dim_W = 5
pad_amt = 0
pad_amt = [0, 0, 0, 0]
pad_amt_H = pad_amt[0] + pad_amt[2]
pad_amt_W = pad_amt[1] + pad_amt[3]
pad_val = 0

ofm_dim_H = compute_conv_output_dim(ifm_dim_H, k_H, stride, pad_amt)
ofm_dim_W = compute_conv_output_dim(ifm_dim_W, k_W, stride, pad_amt)
ofm_dim_H = compute_conv_output_dim_2D_padding(ifm_dim_H, k_H, stride, pad_amt_H)
ofm_dim_W = compute_conv_output_dim_2D_padding(ifm_dim_W, k_W, stride, pad_amt_W)

x = np.asarray(
[
Expand Down Expand Up @@ -432,11 +444,13 @@ def test_im2col():
ifm_ch = 2
ifm_dim_H = 4
ifm_dim_W = 5
pad_amt = 1
pad_amt = [1, 1, 1, 1]
pad_amt_H = pad_amt[0] + pad_amt[2]
pad_amt_W = pad_amt[1] + pad_amt[3]
pad_val = 0

ofm_dim_H = compute_conv_output_dim(ifm_dim_H, k_H, stride, pad_amt)
ofm_dim_W = compute_conv_output_dim(ifm_dim_W, k_W, stride, pad_amt)
ofm_dim_H = compute_conv_output_dim_2D_padding(ifm_dim_H, k_H, stride, pad_amt_H)
ofm_dim_W = compute_conv_output_dim_2D_padding(ifm_dim_W, k_W, stride, pad_amt_W)

x = np.asarray(
[
Expand Down Expand Up @@ -505,11 +519,13 @@ def test_im2col():
ifm_ch = 2
ifm_dim_H = 5
ifm_dim_W = 1
pad_amt = 0
pad_amt = [0, 0, 0, 0]
pad_amt_H = pad_amt[0] + pad_amt[2]
pad_amt_W = pad_amt[1] + pad_amt[3]
pad_val = 0

ofm_dim_H = compute_conv_output_dim(ifm_dim_H, k_H, stride, pad_amt)
ofm_dim_W = compute_conv_output_dim(ifm_dim_W, k_W, stride, pad_amt)
ofm_dim_H = compute_conv_output_dim_2D_padding(ifm_dim_H, k_H, stride, pad_amt_H)
ofm_dim_W = compute_conv_output_dim_2D_padding(ifm_dim_W, k_W, stride, pad_amt_W)

x = np.asarray(
[[[[1, -1]], [[2, -2]], [[3, -3]], [[4, -4]], [[5, -5]]]],
Expand All @@ -536,11 +552,13 @@ def test_im2col():
ifm_ch = 2
ifm_dim_H = 5
ifm_dim_W = 1
pad_amt = 1
pad_amt = [1, 0, 1, 0]
pad_amt_H = pad_amt[0] + pad_amt[2]
pad_amt_W = pad_amt[1] + pad_amt[3]
pad_val = 0

ofm_dim_H = compute_conv_output_dim(ifm_dim_H, k_H, stride, pad_amt)
ofm_dim_W = compute_conv_output_dim(ifm_dim_W, k_W, stride, pad_amt)
ofm_dim_H = compute_conv_output_dim_2D_padding(ifm_dim_H, k_H, stride, pad_amt_H)
ofm_dim_W = compute_conv_output_dim_2D_padding(ifm_dim_W, k_W, stride, pad_amt_W)

x = np.asarray(
[[[[1, -1]], [[2, -2]], [[3, -3]], [[4, -4]], [[5, -5]]]],
Expand Down Expand Up @@ -575,11 +593,13 @@ def test_im2col():
ifm_ch = 2
ifm_dim_H = 5
ifm_dim_W = 1
pad_amt = 1
pad_amt = [1, 0, 1, 0]
pad_amt_H = pad_amt[0] + pad_amt[2]
pad_amt_W = pad_amt[1] + pad_amt[3]
pad_val = 0

ofm_dim_H = compute_conv_output_dim(ifm_dim_H, k_H, stride, pad_amt)
ofm_dim_W = compute_conv_output_dim(ifm_dim_W, k_W, stride, pad_amt)
ofm_dim_H = compute_conv_output_dim_2D_padding(ifm_dim_H, k_H, stride, pad_amt_H)
ofm_dim_W = compute_conv_output_dim_2D_padding(ifm_dim_W, k_W, stride, pad_amt_W)

x = np.asarray(
[[[[1, -1]], [[2, -2]], [[3, -3]], [[4, -4]], [[5, -5]]]],
Expand Down Expand Up @@ -607,10 +627,12 @@ def test_im2col_infer_shapes():
ifm_ch = 1
ifm_dim_H = 4
ifm_dim_W = 4
pad_amt = 0 # default
pad_amt = [0, 0, 0, 0] # default
pad_amt_H = pad_amt[0] + pad_amt[2]
pad_amt_W = pad_amt[1] + pad_amt[3]

ofm_dim_H = compute_conv_output_dim(ifm_dim_H, k_H, stride, pad_amt)
ofm_dim_W = compute_conv_output_dim(ifm_dim_W, k_W, stride, pad_amt)
ofm_dim_H = compute_conv_output_dim_2D_padding(ifm_dim_H, k_H, stride, pad_amt_H)
ofm_dim_W = compute_conv_output_dim_2D_padding(ifm_dim_W, k_W, stride, pad_amt_W)

# set up onnx model
inp = helper.make_tensor_value_info(
Expand Down

0 comments on commit c524020

Please # to comment.