Skip to content
New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

Faster&smaller shape inference #393

Merged
merged 6 commits into from
Oct 13, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docker/Dockerfile.finn
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,7 @@ RUN pip install -e git+https://github.com/fbcotter/dataset_loading.git@0.0.4#egg

# git-based Python repo dependencies
# these are installed in editable mode for easier co-development
ARG FINN_BASE_COMMIT="1fdf06c068f77ed5a312cd3a6edad098f64b09ed"
ARG FINN_BASE_COMMIT="7c2603a95e90e4de2575020e575c24eab6a15889"
ARG FINN_EXP_COMMIT="f82c0d9868bb88ea045dfadb28508d327d287221"
ARG BREVITAS_COMMIT="462f86cdc60f9915baf13afd1676fb21da44c2ee"
ARG PYVERILATOR_COMMIT="0c3eb9343500fc1352a02c020a736c8c2db47e8e"
Expand Down
15 changes: 1 addition & 14 deletions src/finn/custom_op/fpgadataflow/addstreams_batch.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,6 @@
import numpy as np
import os
import warnings
from onnx import TensorProto, helper

from finn.core.datatype import DataType
from finn.custom_op.fpgadataflow.hlscustomop import HLSCustomOp
Expand Down Expand Up @@ -84,19 +83,7 @@ def make_shape_compatible_op(self, model):
assert ishape == exp_ishape, "Unexpected input1 shape."
ishape = tuple(model.get_tensor_shape(self.onnx_node.input[1]))
assert ishape == exp_ishape, "Unexpected input2 shape."
# implement tensor with correct shape
values = np.random.randn(*oshape).astype(np.float32)
return helper.make_node(
"Constant",
inputs=[],
outputs=[self.onnx_node.output[0]],
value=helper.make_tensor(
name="const_tensor",
data_type=TensorProto.FLOAT,
dims=values.shape,
vals=values.flatten().astype(float),
),
)
return super().make_const_shape_op(oshape)

def infer_node_datatype(self, model):
node = self.onnx_node
Expand Down
14 changes: 1 addition & 13 deletions src/finn/custom_op/fpgadataflow/channelwise_op_batch.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,6 @@
import os
import warnings
from math import ceil
from onnx import TensorProto, helper

from finn.core.datatype import DataType
from finn.custom_op.fpgadataflow.hlscustomop import HLSCustomOp
Expand Down Expand Up @@ -125,18 +124,7 @@ def calc_tmem(self):
def make_shape_compatible_op(self, model):
oshape = self.get_normal_output_shape()
# implement tensor with correct shape
values = np.random.randn(*oshape).astype(np.float32)
return helper.make_node(
"Constant",
inputs=[],
outputs=[self.onnx_node.output[0]],
value=helper.make_tensor(
name="const_tensor",
data_type=TensorProto.FLOAT,
dims=values.shape,
vals=values.flatten().astype(float),
),
)
return super().make_const_shape_op(oshape)

def infer_node_datatype(self, model):
node = self.onnx_node
Expand Down
14 changes: 1 addition & 13 deletions src/finn/custom_op/fpgadataflow/convolutioninputgenerator.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,6 @@
import math
import numpy as np
import os
from onnx import TensorProto, helper

from finn.core.datatype import DataType
from finn.custom_op.fpgadataflow.hlscustomop import HLSCustomOp
Expand Down Expand Up @@ -148,18 +147,7 @@ def make_shape_compatible_op(self, model):
ishape = tuple(model.get_tensor_shape(self.onnx_node.input[0]))
assert ishape == exp_ishape, "Unexpect input shape for ConvInpGen."
# implement tensor with correct shape
values = np.random.randn(*oshape).astype(np.float32)
return helper.make_node(
"Constant",
inputs=[],
outputs=[self.onnx_node.output[0]],
value=helper.make_tensor(
name="const_tensor",
data_type=TensorProto.FLOAT,
dims=values.shape,
vals=values.flatten().astype(float),
),
)
return super().make_const_shape_op(oshape)

def infer_node_datatype(self, model):
node = self.onnx_node
Expand Down
15 changes: 1 addition & 14 deletions src/finn/custom_op/fpgadataflow/convolutioninputgenerator1d.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,6 @@
import math
import numpy as np
import os
from onnx import TensorProto, helper

from finn.core.datatype import DataType
from finn.custom_op.fpgadataflow.hlscustomop import HLSCustomOp
Expand Down Expand Up @@ -137,19 +136,7 @@ def make_shape_compatible_op(self, model):
oshape = self.get_normal_output_shape()
ishape = tuple(model.get_tensor_shape(self.onnx_node.input[0]))
assert ishape == exp_ishape, "Unexpect input shape for ConvInpGen."
# implement tensor with correct shape
values = np.random.randn(*oshape).astype(np.float32)
return helper.make_node(
"Constant",
inputs=[],
outputs=[self.onnx_node.output[0]],
value=helper.make_tensor(
name="const_tensor",
data_type=TensorProto.FLOAT,
dims=values.shape,
vals=values.flatten().astype(float),
),
)
return super().make_const_shape_op(oshape)

def infer_node_datatype(self, model):
node = self.onnx_node
Expand Down
15 changes: 1 addition & 14 deletions src/finn/custom_op/fpgadataflow/downsampler.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
import numpy as np
import os
import warnings
from onnx import TensorProto, helper

from finn.core.datatype import DataType
from finn.custom_op.fpgadataflow.hlscustomop import HLSCustomOp
Expand Down Expand Up @@ -83,19 +82,7 @@ def make_shape_compatible_op(self, model):
oshape = self.get_normal_output_shape()
ishape = tuple(model.get_tensor_shape(self.onnx_node.input[0]))
assert ishape == exp_ishape, "Unexpect input shape for DownSampler."
# implement tensor with correct shape
values = np.random.randn(*oshape).astype(np.float32)
return helper.make_node(
"Constant",
inputs=[],
outputs=[self.onnx_node.output[0]],
value=helper.make_tensor(
name="const_tensor",
data_type=TensorProto.FLOAT,
dims=values.shape,
vals=values.flatten().astype(float),
),
)
return super().make_const_shape_op(oshape)

def infer_node_datatype(self, model):
node = self.onnx_node
Expand Down
15 changes: 1 addition & 14 deletions src/finn/custom_op/fpgadataflow/fmpadding_batch.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
import numpy as np
import os
import warnings
from onnx import TensorProto, helper

from finn.core.datatype import DataType
from finn.custom_op.fpgadataflow.hlscustomop import HLSCustomOp
Expand Down Expand Up @@ -99,19 +98,7 @@ def make_shape_compatible_op(self, model):
oshape = self.get_normal_output_shape()
ishape = tuple(model.get_tensor_shape(self.onnx_node.input[0]))
assert ishape == exp_ishape, "Unexpect input shape for SameResize."
# implement tensor with correct shape
values = np.random.randn(*oshape).astype(np.float32)
return helper.make_node(
"Constant",
inputs=[],
outputs=[self.onnx_node.output[0]],
value=helper.make_tensor(
name="const_tensor",
data_type=TensorProto.FLOAT,
dims=values.shape,
vals=values.flatten().astype(float),
),
)
return super().make_const_shape_op(oshape)

def infer_node_datatype(self, model):
node = self.onnx_node
Expand Down
15 changes: 1 addition & 14 deletions src/finn/custom_op/fpgadataflow/globalaccpool_batch.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,6 @@
import numpy as np
import os
import warnings
from onnx import TensorProto, helper

from finn.core.datatype import DataType
from finn.custom_op.fpgadataflow.hlscustomop import HLSCustomOp
Expand Down Expand Up @@ -95,19 +94,7 @@ def make_shape_compatible_op(self, model):
oshape = self.get_normal_output_shape()
ishape = tuple(model.get_tensor_shape(self.onnx_node.input[0]))
assert ishape == exp_ishape, "Unexpected input shape."
# implement tensor with correct shape
values = np.random.randn(*oshape).astype(np.float32)
return helper.make_node(
"Constant",
inputs=[],
outputs=[self.onnx_node.output[0]],
value=helper.make_tensor(
name="const_tensor",
data_type=TensorProto.FLOAT,
dims=values.shape,
vals=values.flatten(),
),
)
return super().make_const_shape_op(oshape)

def infer_node_datatype(self, model):
node = self.onnx_node
Expand Down
15 changes: 1 addition & 14 deletions src/finn/custom_op/fpgadataflow/iodma.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,6 @@
import math
import numpy as np
import warnings
from onnx import TensorProto, helper

from finn.core.datatype import DataType
from finn.custom_op.fpgadataflow.hlscustomop import HLSCustomOp
Expand Down Expand Up @@ -146,19 +145,7 @@ def make_shape_compatible_op(self, model):
oshape = self.get_normal_output_shape()
ishape = tuple(model.get_tensor_shape(self.onnx_node.input[0]))
assert ishape == exp_ishape, "Unexpected input shape."
# implement tensor with correct shape
values = np.random.randn(*oshape).astype(np.float32)
return helper.make_node(
"Constant",
inputs=[],
outputs=[self.onnx_node.output[0]],
value=helper.make_tensor(
name="const_tensor",
data_type=TensorProto.FLOAT,
dims=values.shape,
vals=values.flatten().astype(float),
),
)
return super().make_const_shape_op(oshape)

def infer_node_datatype(self, model):
node = self.onnx_node
Expand Down
14 changes: 5 additions & 9 deletions src/finn/custom_op/fpgadataflow/labelselect_batch.py
Original file line number Diff line number Diff line change
Expand Up @@ -102,18 +102,14 @@ def make_shape_compatible_op(self, model):
oshape = self.get_normal_output_shape()
ishape = tuple(model.get_tensor_shape(self.onnx_node.input[0]))
assert ishape == exp_ishape, "Unexpected input shape."
# implement tensor with correct shape
values = np.random.randn(*oshape).astype(np.int64)
return helper.make_node(
"Constant",
"RandomNormal",
inputs=[],
outputs=[self.onnx_node.output[0]],
value=helper.make_tensor(
name="const_tensor",
data_type=TensorProto.INT64,
dims=values.shape,
vals=values.flatten(),
),
mean=0.0,
scale=1.0,
dtype=TensorProto.INT64,
shape=list(oshape),
)

def infer_node_datatype(self, model):
Expand Down
15 changes: 1 addition & 14 deletions src/finn/custom_op/fpgadataflow/pool_batch.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,6 @@

import numpy as np
import os
from onnx import TensorProto, helper

from finn.core.datatype import DataType
from finn.custom_op.fpgadataflow.hlscustomop import HLSCustomOp
Expand Down Expand Up @@ -163,19 +162,7 @@ def make_shape_compatible_op(self, model):
oshape = self.get_normal_output_shape()
ishape = tuple(model.get_tensor_shape(self.onnx_node.input[0]))
assert ishape == exp_ishape, "Unexpected input shape for Pool_Batch."
# implement tensor with correct shape
values = np.random.randn(*oshape).astype(np.float32)
return helper.make_node(
"Constant",
inputs=[],
outputs=[self.onnx_node.output[0]],
value=helper.make_tensor(
name="const_tensor",
data_type=TensorProto.FLOAT,
dims=values.shape,
vals=values.flatten().astype(float),
),
)
return super().make_const_shape_op(oshape)

def infer_node_datatype(self, model):
node = self.onnx_node
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,6 @@
import numpy as np
import os
import warnings
from onnx import TensorProto, helper

from finn.core.datatype import DataType
from finn.custom_op.fpgadataflow.hlscustomop import HLSCustomOp
Expand Down Expand Up @@ -165,19 +164,7 @@ def make_shape_compatible_op(self, model):
oshape = self.get_normal_output_shape()
ishape = tuple(model.get_tensor_shape(self.onnx_node.input[0]))
assert ishape == tuple(exp_ishape), "Unexpect input shape for StreamingDWC."
# implement tensor with correct shape
values = np.random.randn(*oshape).astype(np.float32)
return helper.make_node(
"Constant",
inputs=[],
outputs=[self.onnx_node.output[0]],
value=helper.make_tensor(
name="const_tensor",
data_type=TensorProto.FLOAT,
dims=values.shape,
vals=values.flatten().astype(float),
),
)
return super().make_const_shape_op(oshape)

def infer_node_datatype(self, model):
node = self.onnx_node
Expand Down
15 changes: 1 addition & 14 deletions src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,6 @@
import os
import textwrap
import warnings
from onnx import TensorProto, helper

from finn.core.datatype import DataType
from finn.custom_op.fpgadataflow.hlscustomop import HLSCustomOp
Expand Down Expand Up @@ -151,19 +150,7 @@ def calc_tmem(self):

def make_shape_compatible_op(self, model):
oshape = self.get_normal_output_shape()
# implement tensor with correct shape
values = np.random.randn(*oshape).astype(np.float32)
return helper.make_node(
"Constant",
inputs=[],
outputs=[self.onnx_node.output[0]],
value=helper.make_tensor(
name="const_tensor",
data_type=TensorProto.FLOAT,
dims=values.shape,
vals=values.flatten().astype(float),
),
)
return super().make_const_shape_op(oshape)

def infer_node_datatype(self, model):
node = self.onnx_node
Expand Down
15 changes: 1 addition & 14 deletions src/finn/custom_op/fpgadataflow/streamingfifo.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,6 @@
import os
import subprocess
import warnings
from onnx import TensorProto, helper
from shutil import copy

from finn.core.datatype import DataType
Expand Down Expand Up @@ -78,19 +77,7 @@ def make_shape_compatible_op(self, model):
oshape = self.get_normal_output_shape()
ishape = tuple(model.get_tensor_shape(self.onnx_node.input[0]))
assert ishape == tuple(exp_ishape), "Unexpect input shape for StreamingFIFO."
# implement tensor with correct shape
values = np.random.randn(*oshape).astype(np.float32)
return helper.make_node(
"Constant",
inputs=[],
outputs=[self.onnx_node.output[0]],
value=helper.make_tensor(
name="const_tensor",
data_type=TensorProto.FLOAT,
dims=values.shape,
vals=values.flatten().astype(float),
),
)
return super().make_const_shape_op(oshape)

def infer_node_datatype(self, model):
node = self.onnx_node
Expand Down
Loading