Skip to content

YM-Byun/VGG16

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

56 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

VGG16

1. Dataset

  • Train dataset: Cifar 10 dataset with 2 augmentation

2. Trainning

  • Using VGG 16
  • learning rate 0.01 for 1~95 epoch
  • learning rate 0.001 for 96 ~ 110 epoch
  • learning rate 0.0001 for 110~ 150 epoch

3. Result

  • Best model at 115 epoch
  • Test acc: 96.67%      Test Loss: 0.13332
  • Val acc: 93.06%    Val Loss: 0.2888

4. Test

python3 test.py -i <IMAGE_PATH>

Other models' acc

  1. 92.64% (https://github.com/kuangliu/pytorch-cifar)
  2. over 90% (https://www.kaggle.com/xhlulu/vgg-16-on-cifar10-with-keras-beginner)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages