This code is the official pytorch implementation of Jointly Optimizing State Operation Prediction and Value Generation for Dialogue State Tracking.
Notice that this model only consists of a single BERT (base-uncased).
python3.7
pytorch-transformers==1.0.0
torch==1.5.0+cu101
torchvision=0.6.0+cu101
wget==3.2
Download the MultiWOZ (2.1 and 2.0) dataset and preprocess it:
sh -x ./run_get_data.sh
To train the model, please run this script.
sh -x ./run_train_dt.sh # MultiWoz 2.1
sh -x ./run_train_dt_V20.sh # MultiWoz 2.0
Run this script:
sh -x ./run_test.sh
Some options are:
--gt_op: give the ground-truth operation for the evaluation.
--gt_p_state: give the ground-truth previous dialogue state for the evaluation.
--gt_gen: give the ground-truth generation for the evaluation.
--eval_all: evaluate all combinations of these.
Notice that the code evaluates model performance using batch_size == 1. \
Detailed results of Transformer-DST at 15-th epoch:
op_code: 4, is_gt_op: False, is_gt_p_state: False, is_gt_gen: False
Epoch 15 joint accuracy : 0.5534744842562432
Epoch 15 slot turn accuracy : 0.9756740861382059
Epoch 15 slot turn F1: 0.9249954757030874
Epoch 15 op accuracy : 0.9762079261671601
Epoch 15 op F1 : {'delete': 0.034934497816593885, 'update': 0.8153223630968437, 'dontcare': 0.32997481108312343, 'carryover': 0.9875716994520346}
Epoch 15 op hit count : {'delete': 24, 'update': 7556, 'dontcare': 131, 'carryover': 208070}
Epoch 15 op all count : {'delete': 1338, 'update': 10430, 'dontcare': 592, 'carryover': 208680}
Final Joint Accuracy : 0.39039039039039036
Final slot turn F1 : 0.9166763820537805
Latency Per Prediction : 138.790865 ms
-----------------------------
hotel 0.5200927357032458 0.9753219989696136
train 0.7239742285520515 0.9874759805583887
restaurant 0.6953504510756419 0.9876127689104863
attraction 0.7110563090834361 0.9893821071379706
taxi 0.559190031152648 0.9795430944963626
You can download Transformer-DST at 15-th epoch from here. On MultiWoz 2.0, Transformer-DST achieves 54.64% joint goal accuracy (checkpoint).
We can reproduce all of our experimental results on a P100 GPU device using 42 as random seed. (I only tried several seeds, and maybe you can get better results.)
This code is based SOM-DST and pytorch-transformers v0.4.0. We thank the authors for their wonderful open-source efforts.
@article{zeng2020multi,
title={Multi-Domain Dialogue State Tracking--A Purely Transformer-Based Generative Approach},
author={Zeng, Yan and Nie, Jian-Yun},
journal={arXiv preprint arXiv:2010.14061},
year={2020}
}
For help using this code, please submit a GitHub issue.
For serious problems, please contact Yan Zeng (yan.zeng@umontreal.ca).
(Please follow the code requirements first.)