forked from open-mmlab/mmdetection3d
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Features] Support PV_RCNN modules (open-mmlab#1957)
* add pvrcnn module code * add voxelsa * fix * fix comments * fix comments * fix comments * add stack sa * fix * fix comments * fix comments * fix * add ut * fix comments
- Loading branch information
Showing
18 changed files
with
2,310 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,353 @@ | ||
_base_ = [ | ||
'../_base_/datasets/kitti-3d-3class.py', | ||
'../_base_/schedules/cyclic-40e.py', '../_base_/default_runtime.py' | ||
] | ||
|
||
voxel_size = [0.05, 0.05, 0.1] | ||
point_cloud_range = [0, -40, -3, 70.4, 40, 1] | ||
|
||
data_root = 'data/kitti/' | ||
class_names = ['Pedestrian', 'Cyclist', 'Car'] | ||
metainfo = dict(CLASSES=class_names) | ||
db_sampler = dict( | ||
data_root=data_root, | ||
info_path=data_root + 'kitti_dbinfos_train.pkl', | ||
rate=1.0, | ||
prepare=dict( | ||
filter_by_difficulty=[-1], | ||
filter_by_min_points=dict(Car=5, Pedestrian=5, Cyclist=5)), | ||
classes=class_names, | ||
sample_groups=dict(Car=15, Pedestrian=10, Cyclist=10), | ||
points_loader=dict( | ||
type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4)) | ||
|
||
train_pipeline = [ | ||
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), | ||
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), | ||
dict(type='ObjectSample', db_sampler=db_sampler, use_ground_plane=True), | ||
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), | ||
dict( | ||
type='GlobalRotScaleTrans', | ||
rot_range=[-0.78539816, 0.78539816], | ||
scale_ratio_range=[0.95, 1.05]), | ||
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), | ||
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), | ||
dict(type='PointShuffle'), | ||
dict( | ||
type='Pack3DDetInputs', | ||
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) | ||
] | ||
test_pipeline = [ | ||
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), | ||
dict( | ||
type='MultiScaleFlipAug3D', | ||
img_scale=(1333, 800), | ||
pts_scale_ratio=1, | ||
flip=False, | ||
transforms=[ | ||
dict( | ||
type='GlobalRotScaleTrans', | ||
rot_range=[0, 0], | ||
scale_ratio_range=[1., 1.], | ||
translation_std=[0, 0, 0]), | ||
dict(type='RandomFlip3D'), | ||
dict( | ||
type='PointsRangeFilter', point_cloud_range=point_cloud_range) | ||
]), | ||
dict(type='Pack3DDetInputs', keys=['points']) | ||
] | ||
|
||
model = dict( | ||
type='PointVoxelRCNN', | ||
data_preprocessor=dict( | ||
type='Det3DDataPreprocessor', | ||
voxel=True, | ||
voxel_layer=dict( | ||
max_num_points=5, # max_points_per_voxel | ||
point_cloud_range=point_cloud_range, | ||
voxel_size=voxel_size, | ||
max_voxels=(16000, 40000))), | ||
voxel_encoder=dict(type='HardSimpleVFE'), | ||
middle_encoder=dict( | ||
type='SparseEncoder', | ||
in_channels=4, | ||
sparse_shape=[41, 1600, 1408], | ||
order=('conv', 'norm', 'act'), | ||
encoder_paddings=((0, 0, 0), ((1, 1, 1), 0, 0), ((1, 1, 1), 0, 0), | ||
((0, 1, 1), 0, 0)), | ||
return_middle_feats=True), | ||
points_encoder=dict( | ||
type='VoxelSetAbstraction', | ||
num_keypoints=2048, | ||
fused_out_channel=128, | ||
voxel_size=voxel_size, | ||
point_cloud_range=point_cloud_range, | ||
voxel_sa_cfgs_list=[ | ||
dict( | ||
type='StackedSAModuleMSG', | ||
in_channels=16, | ||
scale_factor=1, | ||
radius=(0.4, 0.8), | ||
sample_nums=(16, 16), | ||
mlp_channels=((16, 16), (16, 16)), | ||
use_xyz=True), | ||
dict( | ||
type='StackedSAModuleMSG', | ||
in_channels=32, | ||
scale_factor=2, | ||
radius=(0.8, 1.2), | ||
sample_nums=(16, 32), | ||
mlp_channels=((32, 32), (32, 32)), | ||
use_xyz=True), | ||
dict( | ||
type='StackedSAModuleMSG', | ||
in_channels=64, | ||
scale_factor=4, | ||
radius=(1.2, 2.4), | ||
sample_nums=(16, 32), | ||
mlp_channels=((64, 64), (64, 64)), | ||
use_xyz=True), | ||
dict( | ||
type='StackedSAModuleMSG', | ||
in_channels=64, | ||
scale_factor=8, | ||
radius=(2.4, 4.8), | ||
sample_nums=(16, 32), | ||
mlp_channels=((64, 64), (64, 64)), | ||
use_xyz=True) | ||
], | ||
rawpoints_sa_cfgs=dict( | ||
type='StackedSAModuleMSG', | ||
in_channels=1, | ||
radius=(0.4, 0.8), | ||
sample_nums=(16, 16), | ||
mlp_channels=((16, 16), (16, 16)), | ||
use_xyz=True), | ||
bev_feat_channel=256, | ||
bev_scale_factor=8), | ||
backbone=dict( | ||
type='SECOND', | ||
in_channels=256, | ||
layer_nums=[5, 5], | ||
layer_strides=[1, 2], | ||
out_channels=[128, 256]), | ||
neck=dict( | ||
type='SECONDFPN', | ||
in_channels=[128, 256], | ||
upsample_strides=[1, 2], | ||
out_channels=[256, 256]), | ||
rpn_head=dict( | ||
type='PartA2RPNHead', | ||
num_classes=3, | ||
in_channels=512, | ||
feat_channels=512, | ||
use_direction_classifier=True, | ||
dir_offset=0.78539, | ||
anchor_generator=dict( | ||
type='Anchor3DRangeGenerator', | ||
ranges=[[0, -40.0, -0.6, 70.4, 40.0, -0.6], | ||
[0, -40.0, -0.6, 70.4, 40.0, -0.6], | ||
[0, -40.0, -1.78, 70.4, 40.0, -1.78]], | ||
sizes=[[0.8, 0.6, 1.73], [1.76, 0.6, 1.73], [3.9, 1.6, 1.56]], | ||
rotations=[0, 1.57], | ||
reshape_out=False), | ||
diff_rad_by_sin=True, | ||
assigner_per_size=True, | ||
assign_per_class=True, | ||
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), | ||
loss_cls=dict( | ||
type='mmdet.FocalLoss', | ||
use_sigmoid=True, | ||
gamma=2.0, | ||
alpha=0.25, | ||
loss_weight=1.0), | ||
loss_bbox=dict( | ||
type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0), | ||
loss_dir=dict( | ||
type='mmdet.CrossEntropyLoss', use_sigmoid=False, | ||
loss_weight=0.2)), | ||
roi_head=dict( | ||
type='PVRCNNRoiHead', | ||
num_classes=3, | ||
semantic_head=dict( | ||
type='ForegroundSegmentationHead', | ||
in_channels=640, | ||
extra_width=0.1, | ||
loss_seg=dict( | ||
type='mmdet.FocalLoss', | ||
use_sigmoid=True, | ||
reduction='sum', | ||
gamma=2.0, | ||
alpha=0.25, | ||
activated=True, | ||
loss_weight=1.0)), | ||
bbox_roi_extractor=dict( | ||
type='Batch3DRoIGridExtractor', | ||
grid_size=6, | ||
roi_layer=dict( | ||
type='StackedSAModuleMSG', | ||
in_channels=128, | ||
radius=(0.8, 1.6), | ||
sample_nums=(16, 16), | ||
mlp_channels=((64, 64), (64, 64)), | ||
use_xyz=True, | ||
pool_mod='max'), | ||
), | ||
bbox_head=dict( | ||
type='PVRCNNBBoxHead', | ||
in_channels=128, | ||
grid_size=6, | ||
num_classes=3, | ||
class_agnostic=True, | ||
shared_fc_channels=(256, 256), | ||
reg_channels=(256, 256), | ||
cls_channels=(256, 256), | ||
dropout_ratio=0.3, | ||
with_corner_loss=True, | ||
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), | ||
loss_bbox=dict( | ||
type='mmdet.SmoothL1Loss', | ||
beta=1.0 / 9.0, | ||
reduction='sum', | ||
loss_weight=1.0), | ||
loss_cls=dict( | ||
type='mmdet.CrossEntropyLoss', | ||
use_sigmoid=True, | ||
reduction='sum', | ||
loss_weight=1.0))), | ||
# model training and testing settings | ||
train_cfg=dict( | ||
rpn=dict( | ||
assigner=[ | ||
dict( # for Pedestrian | ||
type='Max3DIoUAssigner', | ||
iou_calculator=dict(type='BboxOverlapsNearest3D'), | ||
pos_iou_thr=0.5, | ||
neg_iou_thr=0.35, | ||
min_pos_iou=0.35, | ||
ignore_iof_thr=-1), | ||
dict( # for Cyclist | ||
type='Max3DIoUAssigner', | ||
iou_calculator=dict(type='BboxOverlapsNearest3D'), | ||
pos_iou_thr=0.5, | ||
neg_iou_thr=0.35, | ||
min_pos_iou=0.35, | ||
ignore_iof_thr=-1), | ||
dict( # for Car | ||
type='Max3DIoUAssigner', | ||
iou_calculator=dict(type='BboxOverlapsNearest3D'), | ||
pos_iou_thr=0.6, | ||
neg_iou_thr=0.45, | ||
min_pos_iou=0.45, | ||
ignore_iof_thr=-1) | ||
], | ||
allowed_border=0, | ||
pos_weight=-1, | ||
debug=False), | ||
rpn_proposal=dict( | ||
nms_pre=9000, | ||
nms_post=512, | ||
max_num=512, | ||
nms_thr=0.8, | ||
score_thr=0, | ||
use_rotate_nms=True), | ||
rcnn=dict( | ||
assigner=[ | ||
dict( # for Pedestrian | ||
type='Max3DIoUAssigner', | ||
iou_calculator=dict( | ||
type='BboxOverlaps3D', coordinate='lidar'), | ||
pos_iou_thr=0.55, | ||
neg_iou_thr=0.55, | ||
min_pos_iou=0.55, | ||
ignore_iof_thr=-1), | ||
dict( # for Cyclist | ||
type='Max3DIoUAssigner', | ||
iou_calculator=dict( | ||
type='BboxOverlaps3D', coordinate='lidar'), | ||
pos_iou_thr=0.55, | ||
neg_iou_thr=0.55, | ||
min_pos_iou=0.55, | ||
ignore_iof_thr=-1), | ||
dict( # for Car | ||
type='Max3DIoUAssigner', | ||
iou_calculator=dict( | ||
type='BboxOverlaps3D', coordinate='lidar'), | ||
pos_iou_thr=0.55, | ||
neg_iou_thr=0.55, | ||
min_pos_iou=0.55, | ||
ignore_iof_thr=-1) | ||
], | ||
sampler=dict( | ||
type='IoUNegPiecewiseSampler', | ||
num=128, | ||
pos_fraction=0.5, | ||
neg_piece_fractions=[0.8, 0.2], | ||
neg_iou_piece_thrs=[0.55, 0.1], | ||
neg_pos_ub=-1, | ||
add_gt_as_proposals=False, | ||
return_iou=True), | ||
cls_pos_thr=0.75, | ||
cls_neg_thr=0.25)), | ||
test_cfg=dict( | ||
rpn=dict( | ||
nms_pre=1024, | ||
nms_post=100, | ||
max_num=100, | ||
nms_thr=0.7, | ||
score_thr=0, | ||
use_rotate_nms=True), | ||
rcnn=dict( | ||
use_rotate_nms=True, | ||
use_raw_score=True, | ||
nms_thr=0.1, | ||
score_thr=0.1))) | ||
train_dataloader = dict( | ||
batch_size=2, | ||
num_workers=2, | ||
dataset=dict(dataset=dict(pipeline=train_pipeline, metainfo=metainfo))) | ||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline, metainfo=metainfo)) | ||
eval_dataloader = dict(dataset=dict(pipeline=test_pipeline, metainfo=metainfo)) | ||
lr = 0.001 | ||
optim_wrapper = dict(optimizer=dict(lr=lr)) | ||
param_scheduler = [ | ||
# learning rate scheduler | ||
# During the first 16 epochs, learning rate increases from 0 to lr * 10 | ||
# during the next 24 epochs, learning rate decreases from lr * 10 to | ||
# lr * 1e-4 | ||
dict( | ||
type='CosineAnnealingLR', | ||
T_max=15, | ||
eta_min=lr * 10, | ||
begin=0, | ||
end=15, | ||
by_epoch=True, | ||
convert_to_iter_based=True), | ||
dict( | ||
type='CosineAnnealingLR', | ||
T_max=25, | ||
eta_min=lr * 1e-4, | ||
begin=15, | ||
end=40, | ||
by_epoch=True, | ||
convert_to_iter_based=True), | ||
# momentum scheduler | ||
# During the first 16 epochs, momentum increases from 0 to 0.85 / 0.95 | ||
# during the next 24 epochs, momentum increases from 0.85 / 0.95 to 1 | ||
dict( | ||
type='CosineAnnealingMomentum', | ||
T_max=15, | ||
eta_min=0.85 / 0.95, | ||
begin=0, | ||
end=15, | ||
by_epoch=True, | ||
convert_to_iter_based=True), | ||
dict( | ||
type='CosineAnnealingMomentum', | ||
T_max=25, | ||
eta_min=1, | ||
begin=15, | ||
end=40, | ||
by_epoch=True, | ||
convert_to_iter_based=True) | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.