Skip to content

Commit

Permalink
Merge pull request #20 from adamlilith/solstice_2022_2023
Browse files Browse the repository at this point in the history
Solstice 2022 2023
  • Loading branch information
adamlilith authored Jan 26, 2023
2 parents fa88fcf + 936832e commit b696375
Show file tree
Hide file tree
Showing 31 changed files with 364 additions and 186 deletions.
4 changes: 2 additions & 2 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
Package: enmSdmX
Type: Package
Title: Species Distribution Modeling and Ecological Niche Modeling
Version: 1.0.0
Date: 2022-12-05
Version: 1.0.1
Date: 2023-01-25
Authors@R:
c(
person(
Expand Down
7 changes: 7 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,10 @@
enmSdmX 1.0.1
===========
o Fixed bug experienced by some users using predictEnmSdm() and predictMaxNet() (Thank you, Nikki!)
o Fixed bug in trainByCrossValid() using improper call to evalContBoyce()
o Fixed extract() bug in some examples
o summarizeByCrossValid() now summarizes natural spline (NS) models

enmSdmX 1.0.0
===========
o First release on CRAN
2 changes: 1 addition & 1 deletion R/geoFold.r
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@
#'
#' @return A vector of integers the same length as the number of points in \code{x}. Each integer indicates which fold a point in \code{x} belongs to.
#'
#' @example man/examples/pointGeoFold_examples.r
#' @example man/examples/geoFold_examples.r
#'
#' @export
geoFold <- function(
Expand Down
6 changes: 4 additions & 2 deletions R/predictEnmSdm.r
Original file line number Diff line number Diff line change
Expand Up @@ -138,7 +138,8 @@ predictEnmSdm <- function(
notNas <- which(stats::complete.cases(nd))
nd <- nd[notNas, , drop=FALSE]
preds <- gbm::predict.gbm(model, newdata, n.trees=model$gbm.call$n.trees, type='response', ...)
out <- newdata[[1L]] * NA
out <- newdata[[1L]]
out[] <- NA
out <- setValueByCell(out, preds, cell=notNas, format='raster')
} else {
out <- gbm::predict.gbm(model, newdata, n.trees=model$gbm.call$n.trees, type='response', ...)
Expand Down Expand Up @@ -179,7 +180,8 @@ predictEnmSdm <- function(
preds <- preds[ , '1']

if (inherits(newdata, 'SpatRaster')) {
out <- newdata[[1L]] * NA
out <- newdata[[1L]]
out[] <- NA
out <- setValueByCell(out, preds, cell=notNas, format='raster')
} else {
out <- rep(NA, nrow(newdata))
Expand Down
3 changes: 2 additions & 1 deletion R/predictMaxNet.r
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,8 @@ predictMaxNet <- function(
preds <- do.call(predictMaxNet, args = list(model = model, newdata = nd, clamp = clamp, type = type, ...))

if (inherits(newdata, 'SpatRaster')) {
out <- newdata[[1L]] * NA
out <- newdata[[1L]]
out[] <- NA
out <- setValueByCell(out, preds, cell=notNas, format='raster')
} else {
out <- rep(NA, nrow(newdata))
Expand Down
24 changes: 18 additions & 6 deletions R/summaryByCrossValid.r
Original file line number Diff line number Diff line change
Expand Up @@ -170,12 +170,24 @@ summaryByCrossValid <- function(

thisTuning <- tuning[[k]]

thisTerm <- thisTuning$model[1]
thisTerm <- strsplit(thisTerm, ' ')[[1]]
thisTerm <- thisTerm[3:length(thisTerm)]
if (any(thisTerm == '1')) thisTerm <- thisTerm[-which(thisTerm == '1')]
if (any(thisTerm == '+')) thisTerm <- thisTerm[-which(thisTerm == '+')]
if (any(thisTerm == '-')) thisTerm <- thisTerm[-which(thisTerm == '-')]
thisTerm <- thisTuning$model[1L]

# natural splines model
if (grepl(thisTerm, pattern='splines')) {

thisTerm <- strsplit(thisTerm, ' \\+\\ ')[[1L]]
if (any(thisTerm == '1')) thisTerm <- thisTerm[-which(thisTerm == '1')]

# "normal" GLM model
} else {

thisTerm <- strsplit(thisTerm, ' ')[[1]]
thisTerm <- thisTerm[3:length(thisTerm)]
if (any(thisTerm == '1')) thisTerm <- thisTerm[-which(thisTerm == '1')]
if (any(thisTerm == '+')) thisTerm <- thisTerm[-which(thisTerm == '+')]
if (any(thisTerm == '-')) thisTerm <- thisTerm[-which(thisTerm == '-')]

}

for (countTerm in seq_along(thisTerm)) {
whichTerm <- which(out$term == thisTerm[countTerm])
Expand Down
8 changes: 4 additions & 4 deletions R/trainByCrossValid.r
Original file line number Diff line number Diff line change
Expand Up @@ -264,11 +264,11 @@ trainByCrossValid <- function(
kTuning$logLossDelta[countModel] <- metricTrain - metricTest

# CBI
# metricTrain <- evalContBoyce(pres=predToTrainPres, bg=predToTrainContrast, presWeight=trainPresWeights, contrastWeight=trainContrastWeights, na.rm=na.rm, ...)
# metricTest <- evalContBoyce(pres=predToTestPres, bg=predToTestContrast, presWeight=testPresWeights, contrastWeight=testContrastWeights, na.rm=na.rm, ...)
# metricTrain <- evalContBoyce(pres=predToTrainPres, contrast=predToTrainContrast, presWeight=trainPresWeights, contrastWeight=trainContrastWeights, na.rm=na.rm, ...)
# metricTest <- evalContBoyce(pres=predToTestPres, contrast=predToTestContrast, presWeight=testPresWeights, contrastWeight=testContrastWeights, na.rm=na.rm, ...)

metricTrain <- evalContBoyce(pres=predToTrainPres, bg=predToTrainContrast, presWeight=trainPresWeights, contrastWeight=trainContrastWeights, na.rm=na.rm)
metricTest <- evalContBoyce(pres=predToTestPres, bg=predToTestContrast, presWeight=testPresWeights, contrastWeight=testContrastWeights, na.rm=na.rm)
metricTrain <- evalContBoyce(pres=predToTrainPres, contrast=predToTrainContrast, presWeight=trainPresWeights, contrastWeight=trainContrastWeights, na.rm=na.rm)
metricTest <- evalContBoyce(pres=predToTestPres, contrast=predToTestContrast, presWeight=testPresWeights, contrastWeight=testContrastWeights, na.rm=na.rm)

if (countModel == 1) kTuning$cbiDelta <- kTuning$cbiTest <- kTuning$cbiTrain <- NA
kTuning$cbiTrain[countModel] <- metricTrain
Expand Down
11 changes: 8 additions & 3 deletions man/bioticVelocity.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

11 changes: 8 additions & 3 deletions man/examples/bioticVelocity_examples.r
Original file line number Diff line number Diff line change
Expand Up @@ -36,15 +36,20 @@ madClim2050 <- project(madClim2050, madAlbers)
madClim2070 <- project(madClim2070, madAlbers)
madClim2090 <- project(madClim2090, madAlbers)

# Coordinate reference systems:
wgs84 <- getCRS('WGS84') # WGS84
madAlbers <- getCRS('madAlbers') # Madagascar Albers

# lemur occurrence data
data(lemurs)
wgs84 <- getCRS('WGS84')
occs <- lemurs[lemurs$species == 'Eulemur fulvus', ]
occs <- st_as_sf(occs, coords = c('longitude', 'latitude'), crs = wgs84)
occs <- st_transform(occs, getCRS('madAlbers'))
occs <- vect(occs, geom=c('longitude', 'latitude'), crs=wgs84)
occs <- project(occs, madAlbers)

# eliminate cell duplicates
occs <- elimCellDuplicates(occs, madClim)

# extract environment at occurrences
occEnv <- extract(madClim, occs, ID = FALSE)
occEnv <- occEnv[complete.cases(occEnv), ]

Expand Down
File renamed without changes.
19 changes: 17 additions & 2 deletions man/examples/nearestEnvPoints_example.r
Original file line number Diff line number Diff line change
Expand Up @@ -7,35 +7,47 @@
library(sf)
library(terra)

# coordinate reference system
wgs84 <- getCRS('WGS84')

# lemur point data
data(lemurs)
precise <- lemurs[lemurs$species == 'Eulemur rubriventer', ]
ll <- c('longitude', 'latitude')
wgs84 <- getCRS('WGS84')
precise <- sf::st_as_sf(precise[ , ll], coords=ll, crs=wgs84)

# *fake* lemur administrative unit-level data
faritras <- c('Vakinankaratra', 'Haute matsiatra', 'Ihorombe',
'Vatovavy Fitovinany', 'Alaotra-Mangoro', 'Analanjirofo', 'Atsinanana',
'Analamanga', 'Itasy')

data(mad1)
imprecise <- mad1[mad1$NAME_2 %in% faritras, ]

# climate predictors
rastFile <- system.file('extdata/madClim.tif', package='enmSdmX')
rasts <- rast(rastFile)

### Plot environment of points and environments of each polygon closest to
### centroid of environments of points. In this example, we use the first two
### principal component axes to characterize the niche.

# apply Nearest Environmental Point method
envPtsPolys <- nearestEnvPoints(rasts, pts = precise, polys = imprecise,
pca = TRUE, numPcs = 2)
envPolys <- nearestEnvPoints(rasts, pts = precise, polys = imprecise, numPcs = 2,
out = 'polys')
envPts <- nearestEnvPoints(rasts, pts = precise, polys = imprecise, numPcs = 2,
out = 'pts')

allPolyEnvs <- extract(rasts, imprecise)

# plot occurrences in environmental space
plot(envPtsPolys$PC1, envPtsPolys$PC2, pch=16, col='black',
xlab='PC1', ylab='PC2')

points(envPolys$PC1, envPolys$PC2, pch=21, bg='orange')

legend(
'bottomleft',
inset = 0.01,
Expand All @@ -47,13 +59,15 @@ legend(

### compare identified environments to all environments across all polygons
###########################################################################

env <- as.data.frame(rasts)
pca <- stats::prcomp(env, center=TRUE, scale.=TRUE)

allPolyEnvs <- extract(rasts, imprecise, ID = FALSE)
allPolyEnvsPcs <- predict(pca, allPolyEnvs)
allPolyEnvs <- cbind(allPolyEnvs, allPolyEnvsPcs)

# plot in environmental space
plot(allPolyEnvs$PC1, allPolyEnvs$PC2, pch=16, col='orange',
xlab='PC1', ylab='PC2')
points(envPts$PC1, envPts$PC2, pch=16)
Expand All @@ -70,6 +84,7 @@ legend(
### display niches (minimum convex hulls) estimated
### using just precise or precise + imprecise records
#####################################################

pcs <- c('PC1', 'PC2')
preciseIndices <- chull(envPts[ , pcs])
preciseImpreciseIndices <- chull(envPtsPolys[ , pcs])
Expand All @@ -81,7 +96,7 @@ preciseImpreciseIndices <- c(preciseImpreciseIndices,
preciseOnlyNiche <- envPts[preciseIndices, pcs]
preciseImpreciseNiche <- envPtsPolys[preciseImpreciseIndices, pcs]

# plot
# plot in environmental space
plot(allPolyEnvs$PC1, allPolyEnvs$PC2, pch=16, col='orange',
xlab='PC1', ylab='PC2')
points(envPts$PC1, envPts$PC2, pch=16)
Expand Down
25 changes: 20 additions & 5 deletions man/examples/nearestGeogPoints_example.r
Original file line number Diff line number Diff line change
Expand Up @@ -5,34 +5,41 @@ library(terra)
### example using SpatVector inputs (terra package)
###################################################

# Tananarive (Paris) / Laborde Grid - EPSG:29701
# Get coordinate reference systems:
# * WGS84
# * Tananarive (Paris) / Laborde Grid - EPSG:29701
wgs84 <- getCRS('WGS84')
madProj <- getCRS('Madagascar Albers')

# outline of Madagascar faritras
data(mad1)
mad1 <- vect(mad1)
mad1 <- project(mad1, madProj)

# lemur point data
data(lemurs)
redBelly <- lemurs[lemurs$species == 'Eulemur rubriventer', ]
ll <- c('longitude', 'latitude')
redBelly <- vect(redBelly[ , ll], geom=ll, crs=wgs84)
redBelly <- vect(redBelly, geom=ll, crs=wgs84)
redBelly <- project(redBelly, madProj)

# *fake* lemur farita-level data
faritras <- c('Vakinankaratra', 'Haute matsiatra', 'Ihorombe',
'Vatovavy Fitovinany', 'Alaotra-Mangoro', 'Analanjirofo', 'Atsinanana',
'Analamanga', 'Itasy')
polys <- mad1[mad1$NAME_2 %in% faritras, ]

# apply Nearest Geographic Point method
mcpPolys <- nearestGeogPoints(polys = polys)
mcpPts <- nearestGeogPoints(pts = redBelly, polys = NULL)
mcpPolysPoints <- nearestGeogPoints(pts = redBelly, polys = polys)

# extent of occurrence in m2
# compare extent of occurrence (EOO) in m2
expanse(mcpPolys)
expanse(mcpPts)
expanse(mcpPolysPoints)

# plot minimum convex polygons
plot(mad1, border='gray')
plot(polys, col='gray80', add=TRUE)
plot(mcpPolysPoints, col=scales::alpha('green', 0.4), add=TRUE)
Expand All @@ -52,34 +59,42 @@ border=c(NA, 'black', 'black', 'black', 'black'))
### example using sf* inputs (sf package)
#########################################

# Tananarive (Paris) / Laborde Grid - EPSG:29701
# Get coordinate reference systems:
# * WGS84
# * Tananarive (Paris) / Laborde Grid - EPSG:29701
madProj <- sf::st_crs(getCRS('Madagascar Albers'))
wgs84 <- getCRS('WGS84')

# outline of Madagascar faritras
data(mad1)
mad1 <- sf::st_transform(mad1, madProj)

# lemur point occurrence data
data(lemurs)
redBelly <- lemurs[lemurs$species == 'Eulemur rubriventer', ]
ll <- c('longitude', 'latitude')
redBelly <- sf::st_as_sf(redBelly[ , ll], crs=wgs84, coords=ll)
redBelly <- sf::st_transform(redBelly, madProj)

# *fake* farita-level occurrences
faritras <- c('Vakinankaratra', 'Haute matsiatra', 'Ihorombe',
'Vatovavy Fitovinany', 'Alaotra-Mangoro', 'Analanjirofo', 'Atsinanana',
'Analamanga', 'Itasy')
polys <- mad1[mad1$NAME_2 %in% faritras, ]


# apply Nearest Geographic Point method
mcpPolys <- nearestGeogPoints(polys = polys, terra = FALSE)
mcpPts <- nearestGeogPoints(pts = redBelly, polys = NULL, terra = FALSE)
mcpPolysPoints <- nearestGeogPoints(pts = redBelly, polys = polys,
terra = FALSE)

# extent of occurrence in m2
# extent of occurrence (EOO) in m2
sf::st_area(mcpPolys)
sf::st_area(mcpPts)
sf::st_area(mcpPolysPoints)

# plot minimum convex polygons
plot(sf::st_geometry(mad1))
plot(sf::st_geometry(polys), col='gray80', add=TRUE)
plot(sf::st_geometry(mcpPolysPoints), col=scales::alpha('green', 0.4),
Expand Down
11 changes: 6 additions & 5 deletions man/examples/trainByCrossValid_examples.r
Original file line number Diff line number Diff line change
Expand Up @@ -21,16 +21,17 @@ set.seed(123)
rastFile <- system.file('extdata/madClim.tif', package='enmSdmX')
madClim <- rast(rastFile)

crs <- sf::st_crs(madClim)
# coordinate reference system
wgs84 <- getCRS('WGS84')

# lemur occurrence data
data(lemurs)
occs <- lemurs[lemurs$species == 'Eulemur fulvus', ]
occs <- sf::st_as_sf(occs, coords=c('longitude', 'latitude'), crs=crs)
occs <- vect(occs, geom=c('longitude', 'latitude'), crs=wgs84)

occs <- elimCellDuplicates(occs, madClim)

occEnv <- extract(madClim, occs, ID=FALSE)
occEnv <- extract(madClim, occs, ID = FALSE)
occEnv <- occEnv[complete.cases(occEnv), ]

# create background sites (using just 1000 to speed things up!)
Expand All @@ -57,7 +58,7 @@ folds <- dismo::kfold(env, 3) # just 3 folds (for speed)
### calibrate models
####################

cores <- 1 # increase this to go faster, if your computer can handle it
cores <- 1 # increase this to go faster, if your computer handles it

## MaxEnt
mxx <- trainByCrossValid(
Expand Down Expand Up @@ -149,7 +150,7 @@ brtx <- trainByCrossValid(
cores = cores
)

# summarize BRT parameters in best models
# summarize BRT parameters across best models
summaryByCrossValid(brtx)

## random forests
Expand Down
Loading

0 comments on commit b696375

Please # to comment.