Skip to content

Development of a tweet text sentiment analysis model, using word vectorization and LSTM-Deep learning [TUM-Data Analysis&ML summer 2021]

Notifications You must be signed in to change notification settings

adrianbruenger/twitter_sentiment_lstm

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

65 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

@adrianbruenger @stefanrmmr

FINAL PROJECT for "Python for Engineering Data Analysis - from Machine Learning to Visualization"
TUM, summer semester 2021, development of a tweet text sentiment analysis model using an LSTM approach

DATASET & SOURCES
  - [Kaggle] Twitter US Airline Sentiment tweets from February 2015
    https://www.kaggle.com/crowdflower/twitter-airline-sentiment?select=Tweets.csv
 
IMPLEMENTATION & METRICS
  - exploratory data analysis 
  - twitter API integration
  - tweet text preprocessing
  - word embedding/tokenization
    (Word2Vec with continuous Skip-grams)
  - Biderectional LSTM model based
    classifier deep neural network
  - Hyper parameter tuning
  - history accuracy, loss curves
  - metrics precision, recall
  - confusion matrix
  
TWITTER ACCESS DATA
  - In order to access the full real time 
    twitter sentiment analysis application,
    one needs to add their Twitter credentials
    to the twitter_acc\twitter_acc_config.yaml

USE CASES & APPLICATION
  - analyze most recent tweets for
    specific airlines using titter API
    and evaluate average online sentiment


About

Development of a tweet text sentiment analysis model, using word vectorization and LSTM-Deep learning [TUM-Data Analysis&ML summer 2021]

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%