Skip to content

In the Linux kernel, the following vulnerability has been...

Moderate severity Unreviewed Published May 20, 2024 to the GitHub Advisory Database • Updated Feb 3, 2025

Package

No package listedSuggest a package

Affected versions

Unknown

Patched versions

Unknown

Description

In the Linux kernel, the following vulnerability has been resolved:

ice: fix LAG and VF lock dependency in ice_reset_vf()

9f74a3dfcf83 ("ice: Fix VF Reset paths when interface in a failed over
aggregate"), the ice driver has acquired the LAG mutex in ice_reset_vf().
The commit placed this lock acquisition just prior to the acquisition of
the VF configuration lock.

If ice_reset_vf() acquires the configuration lock via the ICE_VF_RESET_LOCK
flag, this could deadlock with ice_vc_cfg_qs_msg() because it always
acquires the locks in the order of the VF configuration lock and then the
LAG mutex.

Lockdep reports this violation almost immediately on creating and then
removing 2 VF:

======================================================
WARNING: possible circular locking dependency detected
6.8.0-rc6 #54 Tainted: G W O

kworker/60:3/6771 is trying to acquire lock:
ff40d43e099380a0 (&vf->cfg_lock){+.+.}-{3:3}, at: ice_reset_vf+0x22f/0x4d0 [ice]

but task is already holding lock:
ff40d43ea1961210 (&pf->lag_mutex){+.+.}-{3:3}, at: ice_reset_vf+0xb7/0x4d0 [ice]

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #1 (&pf->lag_mutex){+.+.}-{3:3}:
__lock_acquire+0x4f8/0xb40
lock_acquire+0xd4/0x2d0
__mutex_lock+0x9b/0xbf0
ice_vc_cfg_qs_msg+0x45/0x690 [ice]
ice_vc_process_vf_msg+0x4f5/0x870 [ice]
__ice_clean_ctrlq+0x2b5/0x600 [ice]
ice_service_task+0x2c9/0x480 [ice]
process_one_work+0x1e9/0x4d0
worker_thread+0x1e1/0x3d0
kthread+0x104/0x140
ret_from_fork+0x31/0x50
ret_from_fork_asm+0x1b/0x30

-> #0 (&vf->cfg_lock){+.+.}-{3:3}:
check_prev_add+0xe2/0xc50
validate_chain+0x558/0x800
__lock_acquire+0x4f8/0xb40
lock_acquire+0xd4/0x2d0
__mutex_lock+0x9b/0xbf0
ice_reset_vf+0x22f/0x4d0 [ice]
ice_process_vflr_event+0x98/0xd0 [ice]
ice_service_task+0x1cc/0x480 [ice]
process_one_work+0x1e9/0x4d0
worker_thread+0x1e1/0x3d0
kthread+0x104/0x140
ret_from_fork+0x31/0x50
ret_from_fork_asm+0x1b/0x30

other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&pf->lag_mutex);
lock(&vf->cfg_lock);
lock(&pf->lag_mutex);
lock(&vf->cfg_lock);

*** DEADLOCK ***
4 locks held by kworker/60:3/6771:
#0: ff40d43e05428b38 ((wq_completion)ice){+.+.}-{0:0}, at: process_one_work+0x176/0x4d0
#1: ff50d06e05197e58 ((work_completion)(&pf->serv_task)){+.+.}-{0:0}, at: process_one_work+0x176/0x4d0
#2: ff40d43ea1960e50 (&pf->vfs.table_lock){+.+.}-{3:3}, at: ice_process_vflr_event+0x48/0xd0 [ice]
#3: ff40d43ea1961210 (&pf->lag_mutex){+.+.}-{3:3}, at: ice_reset_vf+0xb7/0x4d0 [ice]

stack backtrace:
CPU: 60 PID: 6771 Comm: kworker/60:3 Tainted: G W O 6.8.0-rc6 #54
Hardware name:
Workqueue: ice ice_service_task [ice]
Call Trace:

dump_stack_lvl+0x4a/0x80
check_noncircular+0x12d/0x150
check_prev_add+0xe2/0xc50
? save_trace+0x59/0x230
? add_chain_cache+0x109/0x450
validate_chain+0x558/0x800
__lock_acquire+0x4f8/0xb40
? lockdep_hardirqs_on+0x7d/0x100
lock_acquire+0xd4/0x2d0
? ice_reset_vf+0x22f/0x4d0 [ice]
? lock_is_held_type+0xc7/0x120
__mutex_lock+0x9b/0xbf0
? ice_reset_vf+0x22f/0x4d0 [ice]
? ice_reset_vf+0x22f/0x4d0 [ice]
? rcu_is_watching+0x11/0x50
? ice_reset_vf+0x22f/0x4d0 [ice]
ice_reset_vf+0x22f/0x4d0 [ice]
? process_one_work+0x176/0x4d0
ice_process_vflr_event+0x98/0xd0 [ice]
ice_service_task+0x1cc/0x480 [ice]
process_one_work+0x1e9/0x4d0
worker_thread+0x1e1/0x3d0
? __pfx_worker_thread+0x10/0x10
kthread+0x104/0x140
? __pfx_kthread+0x10/0x10
ret_from_fork+0x31/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30

To avoid deadlock, we must acquire the LAG
---truncated---

References

Published by the National Vulnerability Database May 20, 2024
Published to the GitHub Advisory Database May 20, 2024
Last updated Feb 3, 2025

Severity

Moderate

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v3 base metrics

Attack vector
Local
Attack complexity
Low
Privileges required
Low
User interaction
None
Scope
Unchanged
Confidentiality
None
Integrity
None
Availability
High

CVSS v3 base metrics

Attack vector: More severe the more the remote (logically and physically) an attacker can be in order to exploit the vulnerability.
Attack complexity: More severe for the least complex attacks.
Privileges required: More severe if no privileges are required.
User interaction: More severe when no user interaction is required.
Scope: More severe when a scope change occurs, e.g. one vulnerable component impacts resources in components beyond its security scope.
Confidentiality: More severe when loss of data confidentiality is highest, measuring the level of data access available to an unauthorized user.
Integrity: More severe when loss of data integrity is the highest, measuring the consequence of data modification possible by an unauthorized user.
Availability: More severe when the loss of impacted component availability is highest.
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H

EPSS score

Exploit Prediction Scoring System (EPSS)

This score estimates the probability of this vulnerability being exploited within the next 30 days. Data provided by FIRST.
(5th percentile)

Weaknesses

CVE ID

CVE-2024-36003

GHSA ID

GHSA-4qcc-96j2-gv42

Source code

No known source code

Dependabot alerts are not supported on this advisory because it does not have a package from a supported ecosystem with an affected and fixed version.

Learn more about GitHub language support

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.