Skip to content

In the Linux kernel, the following vulnerability has been...

Moderate severity Unreviewed Published Oct 21, 2024 to the GitHub Advisory Database • Updated Oct 31, 2024

Package

No package listedSuggest a package

Affected versions

Unknown

Patched versions

Unknown

Description

In the Linux kernel, the following vulnerability has been resolved:

static_call: Handle module init failure correctly in static_call_del_module()

Module insertion invokes static_call_add_module() to initialize the static
calls in a module. static_call_add_module() invokes __static_call_init(),
which allocates a struct static_call_mod to either encapsulate the built-in
static call sites of the associated key into it so further modules can be
added or to append the module to the module chain.

If that allocation fails the function returns with an error code and the
module core invokes static_call_del_module() to clean up eventually added
static_call_mod entries.

This works correctly, when all keys used by the module were converted over
to a module chain before the failure. If not then static_call_del_module()
causes a #GP as it blindly assumes that key::mods points to a valid struct
static_call_mod.

The problem is that key::mods is not a individual struct member of struct
static_call_key, it's part of a union to save space:

    union {
            /* bit 0: 0 = mods, 1 = sites */
            unsigned long type;
            struct static_call_mod *mods;
            struct static_call_site *sites;
};

key::sites is a pointer to the list of built-in usage sites of the static
call. The type of the pointer is differentiated by bit 0. A mods pointer
has the bit clear, the sites pointer has the bit set.

As static_call_del_module() blidly assumes that the pointer is a valid
static_call_mod type, it fails to check for this failure case and
dereferences the pointer to the list of built-in call sites, which is
obviously bogus.

Cure it by checking whether the key has a sites or a mods pointer.

If it's a sites pointer then the key is not to be touched. As the sites are
walked in the same order as in __static_call_init() the site walk can be
terminated because all subsequent sites have not been touched by the init
code due to the error exit.

If it was converted before the allocation fail, then the inner loop which
searches for a module match will find nothing.

A fail in the second allocation in __static_call_init() is harmless and
does not require special treatment. The first allocation succeeded and
converted the key to a module chain. That first entry has mod::mod == NULL
and mod::next == NULL, so the inner loop of static_call_del_module() will
neither find a module match nor a module chain. The next site in the walk
was either already converted, but can't match the module, or it will exit
the outer loop because it has a static_call_site pointer and not a
static_call_mod pointer.

References

Published by the National Vulnerability Database Oct 21, 2024
Published to the GitHub Advisory Database Oct 21, 2024
Last updated Oct 31, 2024

Severity

Moderate

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v3 base metrics

Attack vector
Local
Attack complexity
Low
Privileges required
Low
User interaction
None
Scope
Unchanged
Confidentiality
None
Integrity
None
Availability
High

CVSS v3 base metrics

Attack vector: More severe the more the remote (logically and physically) an attacker can be in order to exploit the vulnerability.
Attack complexity: More severe for the least complex attacks.
Privileges required: More severe if no privileges are required.
User interaction: More severe when no user interaction is required.
Scope: More severe when a scope change occurs, e.g. one vulnerable component impacts resources in components beyond its security scope.
Confidentiality: More severe when loss of data confidentiality is highest, measuring the level of data access available to an unauthorized user.
Integrity: More severe when loss of data integrity is the highest, measuring the consequence of data modification possible by an unauthorized user.
Availability: More severe when the loss of impacted component availability is highest.
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H

EPSS score

0.042%
(5th percentile)

Weaknesses

CVE ID

CVE-2024-50002

GHSA ID

GHSA-cxw3-2f59-5p7f

Source code

No known source code

Dependabot alerts are not supported on this advisory because it does not have a package from a supported ecosystem with an affected and fixed version.

Learn more about GitHub language support

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.