Skip to content

Data modeling with Postgres - Data Engineering Nanodegree 1st project

Notifications You must be signed in to change notification settings

ahmadamoudi/Data-Modeling-with-Postgres-DEND

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Project: Data Modeling with Postgres - DEND

Creation, Data Modeling and Data loading of sparkify database (Star schema database in postgres) for Song Play Analysis.

Project Description

A startup called Sparkify wants to analyze the data they've been collecting on songs and user activity on their new music streaming app. The analytics team is particularly interested in understanding what songs users are listening to. Currently, they don't have an easy way to query their data, which resides in a directory of JSON logs on user activity on the app, as well as a directory with JSON metadata on the songs in their app.

The purpose of this project is to apply what I've learned on data modeling with Postgres and build an ETL pipeline using Python. In this project I've defined fact and dimension tables for a star schema designed to optimize queries on song play analysis, which will help analytics team in understanding what songs users are listening to. The ETL pipeline transfers data from files in two local directories into these tables in Postgres using Python and SQL.

Data Source

The data is extracted from two set of files which are JSON file format.

  • songs data
  • log data

Song Dataset

The first dataset is a subset of real data from the Million Song Dataset. Each file is in JSON format and contains metadata about a song and the artist of that song. The files are partitioned by the first three letters of each song's track ID. For example, here are filepaths to two files in this dataset.

song_data/A/A/B/TRAABJL12903CDCF1A.json

And below is an example of what a single song file, TRAABJL12903CDCF1A.json, looks like.

{"num_songs": 1, "artist_id": "ARJIE2Y1187B994AB7", "artist_latitude": null, "artist_longitude": null, "artist_location": "", "artist_name": "Line Renaud", "song_id": "SOUPIRU12A6D4FA1E1", "title": "Der Kleine Dompfaff", "duration": 152.92036, "year": 0}

Log Dataset

The second dataset consists of log files in JSON format generated by this event simulator based on the songs in the dataset above. These simulate activity logs from a music streaming app based on specified configurations.

The log files in the dataset you'll be working with are partitioned by year and month. For example, here are filepaths to two files in this dataset.

log_data/2018/11/2018-11-12-events.json log_data/2018/11/2018-11-13-events.json

And below is an example of what the data in a log file, 2018-11-12-events.json, looks like.

[image]

Schema for Song Play Analysis

Using the song and log datasets, you'll need to create a star schema optimized for queries on song play analysis. This includes the following tables.

Fact Table

  1. songplays - records in log data associated with song plays i.e. records with page NextSong
    • songplay_id, start_time, user_id, level, song_id, artist_id, session_id, location, user_agent

Dimension Tables

  1. users - users in the app
    • user_id, first_name, last_name, gender, level
  2. songs - songs in music database
    • song_id, title, artist_id, year, duration
  3. artists - artists in music database
    • artist_id, name, location, latitude, longitude
  4. time - timestamps of records in songplays broken down into specific units
    • start_time, hour, day, week, month, year, weekday

Releases

No releases published

Packages

No packages published