Skip to content

Deep reinforcement learning using an asynchronous advantage actor-critic (A3C) model.

Notifications You must be signed in to change notification settings

andreimuntean/A3C

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A3C

Deep reinforcement learning using an asynchronous advantage actor-critic (A3C) model written in TensorFlow.

This AI does not rely on hand-engineered rules or features. Instead, it masters the environment by looking at raw pixels and learning from experience, just as humans do.

Dependencies

  • NumPy
  • OpenAI Gym 0.10
  • Pillow
  • SciPy
  • TensorFlow 1.0

Learning Environment

Uses environments provided by OpenAI Gym.

Preprocessing

Each frame is transformed into a 47×47 grayscale image with 32-bit float values between 0 and 1. No image cropping is performed. Reward signals are restricted to -1, 0 and 1.

Network Architecture

The input layer consists of a 47×47 grayscale image.

Four convolutional layers follow, each with 32 filters of size 3×3 and stride 2 and each applying the rectifier nonlinearity.

A recurrent layer follows, consisting of 256 LSTM units.

Lastly, the network diverges into two output layers – one is a probability distribution over actions (represented as logits), the other is a single linear output representing the value function.

Acknowledgements

Implementation inspired by the OpenAI Universe reference agent.

Heavily influenced by DeepMind's seminal paper 'Asynchronous Methods for Deep Reinforcement Learning' (Mnih et al., 2016).

Releases

No releases published

Packages

No packages published