Determninistic Uncertainty Estimation for Conditional Average Treatment Effects
Reference implementation for DUE: https://github.com/y0ast/DUE
If you use this repository, please cite:
@article{van2021on,
title={On Feature Collapse and Deep Kernel Learning for Single Forward Pass Uncertainty},
author={van Amersfoort, Joost and Smith, Lewis and Jesson, Andrew and Key, Oscar and Gal, Yarin},
journal={arXiv preprint arXiv:2102.11409},
year={2021}
}
cd due-cate
conda env create -f environment.yml
pip install -e .
due-cate \
train \
--job-dir experiments/ --num-trials 1000 --gpu-per-trial 0.2 \
ihdp \
--root assets/ \
deep-kernel-gp
due-cate evaluate ----experiment-dir experiments/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-1000/
due-cate \
train \
--job-dir experiments/ --num-trials 1000 --gpu-per-trial 0.2 \
ihdp-cov \
--root assets/ \
deep-kernel-gp
due-cate evaluate ----experiment-dir experiments/ihdp-cov/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-1000/
due-cate \
train \
--job-dir experiments/ --num-trials 1000 --gpu-per-trial 0.2 \
ihdp \
--root assets/ \
ensemble
due-cate evaluate ----experiment-dir experiments/ihdp/tarnet/dh-200_do-2_dp-3_ns--1.0_dr-0.2_sn-0.95_lr-0.001_bs-100_ep-500/
due-cate \
train \
--job-dir experiments/ --num-trials 1000 --gpu-per-trial 0.2 \
ihdp-cov \
--root assets/ \
ensemble
due-cate evaluate ----experiment-dir experiments/ihdp-cov/tarnet/dh-200_do-2_dp-3_ns--1.0_dr-0.2_sn-0.95_lr-0.001_bs-100_ep-500/