Skip to content

asaidozdemir/LRP

Repository files navigation

This is the documentation for "Optical Character Recognition with Machine Learning"

This collection is made for Python Interpreter version 3.8

The Required Python Libraries to run the algorithms are:

-matplotlib -keras -tensorflow -opencv-python -scikit-learn -numpy


DATASET Features 1-) SKLearn Digits Dataset = 1797 (88 array) (0-15 white/black level) 2-) MNist Digits Dataset = 70000 (2828 array) (0-255 white/black level)


ALGORITHM Features

  • KNN n_neighbors = 3 / Number of neighbors weights = uniform / {uniform, distance} algorithm = auto / {auto, ball_tree, kd_tree, brute}

  • SVM kernel = linear / {linear, poly, rbf, sigmoid, precomputed} degree = 3 / Degree of the polynomial kernel gamma = scale / {scale, auto} Kernel coefficient

  • NN layers = 3 / {linear, poly, rbf, sigmoid, precomputed} optimizer = adam / {SGD,RMSprop, Adam, Adadelta, Adagrad, Adamax, Nadam, Ftrl} epochs = 5 / default=3 batch_size = default=32 / 1875*32 = 60.000 image (for Mnist) class_weight = default=None sample_weight = default=None loss = sparse_categorical_crossentropy

  • RFC sample_weight = None / Must be equal size weight array as samples n_estimators = default=100 / The number of trees in the forest. max_depth = default=None / The maximum depth of the tree. decision_function_shape =default='ovr / {'ovo', 'ovr'} one-vs-one, one-vs-rest

About

Letter Recognition with Python

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages